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Bayesian Networks

Sprinkler Rain

Grass Wet

• Nodes are random variables.
• Edges denote direct impact
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Example

• Grass can be wet due to multiple reasons:
• Rain
• Sprinkler

• Also, if it rains, then sprinkler need not be used.
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Bayesian Nets

P(X1, X2, X3, . . . , XN) denotes the joint probability, where Xi are
random variables.

P(X1, X2, X3, . . . , XN) = ΠNk=1P(Xk|parents(Xk))

P(S,G,R) = P(G|S,R)P(S|R)P(R)

3



Spam Email Classification

• y ∈ {0, 1} where 0 means not spam and 1 means spam

• From the emails construct a vector X.

•



a
an
...

computer
...

lotery
...

200


} N words

• The vector has ones if the word is present, and zeros is the
word is absent.

• Each email corresponds to vector/feature of length N
containing zeros or ones.

4



Spam Email Classification

• y ∈ {0, 1} where 0 means not spam and 1 means spam
• From the emails construct a vector X.

•



a
an
...

computer
...

lotery
...

200


} N words

• The vector has ones if the word is present, and zeros is the
word is absent.

• Each email corresponds to vector/feature of length N
containing zeros or ones.

4



Spam Email Classification

• y ∈ {0, 1} where 0 means not spam and 1 means spam
• From the emails construct a vector X.

•



a
an
...

computer
...

lotery
...

200


} N words

• The vector has ones if the word is present, and zeros is the
word is absent.

• Each email corresponds to vector/feature of length N
containing zeros or ones.

4



Spam Email Classification

• y ∈ {0, 1} where 0 means not spam and 1 means spam
• From the emails construct a vector X.

•



a
an
...

computer
...

lotery
...

200


} N words

• The vector has ones if the word is present, and zeros is the
word is absent.

• Each email corresponds to vector/feature of length N
containing zeros or ones.

4



Spam Email Classification

• y ∈ {0, 1} where 0 means not spam and 1 means spam
• From the emails construct a vector X.

•



a
an
...

computer
...

lotery
...

200


} N words

• The vector has ones if the word is present, and zeros is the
word is absent.

• Each email corresponds to vector/feature of length N
containing zeros or ones. 4



Naive Bayes

• Classification model

• Scalable
• Generative and Bayesian
• Usually a simple/good baselines
• We want to model P(class(y) | features (x))
• We can use Bayes rule as follows:
P(class(y) | features (x) ) = P( features (x) |class(y))P(class(y))

P( features (x) )
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Quick Question

Class

x1 x2 x3 xn

P(x1, x2, x3, . . . , xN|y) = P(x1|y)P(x2|y) . . .P(xN|y)

Why is Naive Bayes model called Naive?
Naive assumption xi and xi+1 are independent given y

i.e. p (x2 | x1, y) = p (x2 | y)
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Frame Title

It assumes that the features are independent during
modelling, which is generally not the case.
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What do we need to predict?

P(y|x1, x2, . . . , xN) =
P(x1, x2, . . . , xN|y)P(y)
P(x1, x2, . . . , xN)
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Spam Mail Classification

Probability of xi being a spam email

P(xi = 1|y = 1) = Count(xi = 1 and y = 1)
Count (y = 1)

Similarly,

P(xi = 0|y = 1) = Count(xi = 0 and y = 1)
Count (y = 1)
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Spam Mail classification

P(y = 1) = Count (y = 1)
Count (y = 1) + Count (y = 0)

Similarly,

P(y = 0) = Count (y = 0)
Count (y = 1) + Count (y = 0)
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Example

lets assume that dictionary is [w1,w2,w3]

Index w1 w2 w3 y
1 0 0 0 1
2 0 0 0 0
3 0 0 0 1
4 1 0 0 0
5 1 0 1 1
6 1 1 1 0
7 1 1 1 1
8 1 1 0 0
9 0 1 1 0
10 0 1 1 1
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Spam Classification

if y=0

• P(w1 = 0|y = 0) = 3
5 = 0.6

• P(w2 = 0|y = 0) = 2
5 = 0.4

• P(w3 = 0|y = 0) = 3
5 = 0.6

P(y=0) = 0.5
Similarly, if y=1

• P(w1 = 1|y = 1) = 2
5 = 0.4

• P(w2 = 1|y = 1) = 1
5 = 0.2

• P(w3 = 1|y = 1) = 3
5 = 0.6

P(y=1) = 0.5
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Spam Classification

Given, test email 0,0,1, classify using naive bayes

P(y = 1|w1 = 0,w2 = 0,w3 = 1)

=
P(w1 = 0|y = 1)P(w2 = 0|y = 1)P(w3 = 1|y = 1)P(y = 1)

P(w1 = 0,w2 = 0,w3 = 1)

=
0.6× 0.8× 0.6× 0.5

Z

Similarly, we can calculate
P(y = 0|w1 = 0,w2 = 0,w3 = 1) = 0.6∗0.4∗0.6∗0.5

Z
P(y=1|w1=0,w2=0,w3=1)
P(y=0|w1=0,w2=0,w3=1) = 2 > 1. Thus, classified as a spam
example.
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Naive Bayes for email/sentiment analysis

• “This product is pathetic”. We would assume the
sentiment of such a sentence to be negative. Why?
Presenece of “pathetic”

• Naive bayes would store the probabilities of words
belonging to positive or negative sentiment.

• Good is positive, Bad is negative
• What about: This product is not bad. Naive Bayes is very
naive and does not account for sequential aspect of data.
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Gaussian Naive Bayes

Let us generate some normally distributed height data
assuming Height (male) ∼ N (µ1 = 6.1, σ21 = 0.6) and Height
(female) ∼ N (µ2 = 5.3, σ22 = 0.9)

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4
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Gaussian Naive Bayes

Would you expect a person to height 5.5 as a female or male?
And why?

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

P(F|5.5) = 0.43, P(M|5.5) = 0.22
male
female
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Gaussian Naive Bayes

We have classes C1, C2, C3, . . . , Ck
There is a continuous attribute x
For Class k

• µk = Mean(x|y(x) = Ck)
• σ2k = Variance(x|y(x) = Ck)
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Guassian Naive Bayes

Now for x = some observation ’v’

P(x = v|Ck) =
1√
2πσ2k

exp

−(v−µk)
2

2σ2k
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Gaussian Naive Bayes (2d example)

Would you expect a person to height 5.5 and weight 80 as a
female or male? And why?

Note: no cross covariance! Remember all features are
independent.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Height

50
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Wikipedia Example

Height Weight Footsize Gender
6 180 12 M
5.92 190 11 M
5.58 170 12 M
5.92 165 10 M
5 100 6 F
5.5 100 6 F
5.42 130 7 F
5.75 150 7 F
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Example

Male Female
Mean (height) 5.855 5.41

Variance (height) 3.5 × 10−2 9.7 × 10−2

Mean (weight) 176.25 132.5
Variance (weight) 1.22 × 102 5.5 × 102

Mean (Foot) 11.25 7.5
Variance (Foot) 9.7 × 10−1 1.67
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Classify the Person

• Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if
it’s male or female.

• P(F|6ft, 130lbs, 8units) =
P(6ft|F)P(130lbs|F)P(8units|F)P(F)

P(130lbs, 8units, 6ft)

• P(130lbs|F) = 1√
2π×550 × exp −(132.5−130)2

2×550 = .0167
• Finally, we get probability of female given data is greater
than the probability of class being male given data.
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