Naive Bayes

Nipun Batra July 5, 2020

IIT Gandhinagar

Bayesian Networks

- Nodes are random variables.
- Edges denote direct impact

- Grass can be wet due to multiple reasons:
 - Rain
 - Sprinkler
- Also, if it rains, then sprinkler need not be used.

 $P(X_1, X_2, X_3, ..., X_N)$ denotes the joint probability, where X_i are random variables.

 $P(X_1, X_2, X_3, \ldots, X_N) = \prod_{k=1}^N P(X_k | parents(X_k))$

P(S, G, R) = P(G|S, R)P(S|R)P(R)

• $y \in \{0, 1\}$ where 0 means not spam and 1 means spam

- $y \in \{0,1\}$ where 0 means not spam and 1 means spam
- From the emails construct a vector X.

٠

- $y \in \{0,1\}$ where 0 means not spam and 1 means spam
- From the emails construct a vector X.

.

- $y \in \{0,1\}$ where 0 means not spam and 1 means spam
- From the emails construct a vector X.

• The vector has ones if the word is present, and zeros is the word is absent.

.

- $y \in \{0,1\}$ where 0 means not spam and 1 means spam
- From the emails construct a vector *X*.

- The vector has ones if the word is present, and zeros is the word is absent.
- Each email corresponds to vector/feature of length N containing zeros or ones.

• Classification model

- Classification model
- Scalable

- Classification model
- Scalable
- Generative and Bayesian

- Classification model
- Scalable
- Generative and Bayesian
- Usually a simple/good baselines

- Classification model
- Scalable
- \cdot Generative and Bayesian
- Usually a simple/good baselines
- We want to model P(class(y) | features (x))

- Classification model
- Scalable
- \cdot Generative and Bayesian
- Usually a simple/good baselines
- We want to model P(class(y) | features (x))
- We can use Bayes rule as follows: $P(class(y) \mid features(x)) = \frac{P(features(x) \mid class(y))P(class(y))}{P(features(x))}$

 $P(x_1, x_2, x_3, ..., x_N | y) = P(x_1 | y) P(x_2 | y) ... P(x_N | y)$

 $P(x_1, x_2, x_3, \dots, x_N | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$ Why is Naive Bayes model called Naive?

 $P(x_1, x_2, x_3, \dots, x_N | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$ Why is Naive Bayes model called Naive? Naive assumption x_i and x_{i+1} are independent given y

i.e.
$$p(x_2 | x_1, y) = p(x_2 | y)$$

It assumes that the features are independent during modelling, which is generally not the case.

$$P(y|x_1, x_2, \dots, x_N) = \frac{P(x_1, x_2, \dots, x_N|y)P(y)}{P(x_1, x_2, \dots, x_N)}$$

Probability of x_i being a spam email

$$P(x_i = 1 | y = 1) = \frac{\text{Count}(x_i = 1 \text{ and } y = 1)}{\text{Count}(y = 1)}$$

Similarly,

$$P(x_i = 0 | y = 1) = \frac{\text{Count}(x_i = 0 \text{ and } y = 1)}{\text{Count}(y = 1)}$$

$$P(y = 1) = \frac{\text{Count } (y = 1)}{\text{Count } (y = 1) + \text{Count } (y = 0)}$$

Similarly,

$$P(y=0) = \frac{\text{Count } (y=0)}{\text{Count } (y=1) + \text{Count } (y=0)}$$

Example

lets assume that dictionary is $[w_1, w_2, w_3]$

Index	W1	W2	W ₃	у
1	0	0	0	1
2	0	0	0	0
3	0	0	0	1
4	1	0	0	0
5	1	0	1	1
6	1	1	1	0
7	1	1	1	1
8	1	1	0	0
9	0	1	1	0
10	0	1	1	1

Spam Classification

if y=0

- $P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$
- $P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$
- $P(w_3 = 0|y = 0) = \frac{3}{5} = 0.6$

P(y=0) = 0.5 Similarly, if y=1

- $P(w_1 = 1|y = 1) = \frac{2}{5} = 0.4$
- $P(w_2 = 1|y = 1) = \frac{1}{5} = 0.2$
- $P(w_3 = 1|y = 1) = \frac{3}{5} = 0.6$

P(y=1) = 0.5

$$P(y = 1 | w_1 = 0, w_2 = 0, w_3 = 1)$$

=
$$\frac{P(w_1 = 0 | y = 1)P(w_2 = 0 | y = 1)P(w_3 = 1 | y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

=
$$\frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

$$P(y = 1 | w_1 = 0, w_2 = 0, w_3 = 1)$$

=
$$\frac{P(w_1 = 0 | y = 1)P(w_2 = 0 | y = 1)P(w_3 = 1 | y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

=
$$\frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

Similarly, we can calculate $P(y = 0 | w_1 = 0, w_2 = 0, w_3 = 1) = \frac{0.6*0.4*0.6*0.5}{Z}$

$$P(y = 1 | w_1 = 0, w_2 = 0, w_3 = 1)$$

=
$$\frac{P(w_1 = 0 | y = 1)P(w_2 = 0 | y = 1)P(w_3 = 1 | y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

=
$$\frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

Similarly, we can calculate $P(y = 0 | w_1 = 0, w_2 = 0, w_3 = 1) = \frac{0.6*0.4*0.6*0.5}{Z}$ $\frac{P(y=1|w_1=0,w_2=0,w_3=1)}{P(y=0|w_1=0,w_2=0,w_3=1)} = 2 > 1$. Thus, classified as a spam example.

Naive Bayes for email/sentiment analysis

- "This product is pathetic". We would assume the sentiment of such a sentence to be negative. Why? Presenece of "pathetic"
- Naive bayes would store the probabilities of words belonging to positive or negative sentiment.
- Good is positive, Bad is negative
- What about: This product is not bad. Naive Bayes is very naive and does not account for sequential aspect of data.

Gaussian Naive Bayes

Let us generate some normally distributed height data assuming Height (male) $\sim \mathcal{N}(\mu_1 = 6.1, \sigma_1^2 = 0.6)$ and Height (female) $\sim \mathcal{N}(\mu_2 = 5.3, \sigma_2^2 = 0.9)$

Gaussian Naive Bayes

Let us generate some normally distributed height data assuming Height (male) $\sim \mathcal{N}(\mu_1 = 6.1, \sigma_1^2 = 0.6)$ and Height (female) $\sim \mathcal{N}(\mu_2 = 5.3, \sigma_2^2 = 0.9)$

Gaussian Naive Bayes

Would you expect a person to height 5.5 as a female or male? And why?

We have classes $C_1, C_2, C_3, \ldots, C_k$ There is a continuous attribute x For Class k

•
$$\mu_k = Mean(x|y(x) = C_k)$$

•
$$\sigma_k^2 = Variance(x|y(x) = C_k)$$

Now for x = some observation 'v'

$$P(x = v | C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp^{\frac{-(v-\mu_k)^2}{2\sigma_k^2}}$$

Would you expect a person to height 5.5 and weight 80 as a female or male? And why?

Gaussian Naive Bayes (2d example)

Would you expect a person to height 5.5 and weight 80 as a female or male? And why? Note: no cross covariance! Remember all features are independent.

Height	Weight	Footsize	Gender
6	180	12	М
5.92	190	11	М
5.58	170	12	М
5.92	165	10	М
5	100	6	F
5.5	100	6	F
5.42	130	7	F
5.75	150	7	F

	Male	Female		
Mean (height)	5.855	5.41		
Variance (height)	3.5×10^{-2}	9.7×10^{-2}		
Mean (weight)	176.25	132.5		
Variance (weight)	1.22×10^{2}	5.5×10^{2}		
Mean (Foot)	11.25	7.5		
Variance (Foot)	9.7×10^{-1}	1.67		

• Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.

Classify the Person

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.
- $\begin{array}{l} \cdot \ P(F|6ft, 130lbs, 8units) = \\ \underline{P(6ft|F)P(130lbs|F)P(8units|F)P(F)} \\ \hline P(130lbs, 8units, 6ft) \end{array}$

Classify the Person

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.
- $\begin{array}{l} \cdot \ P(F|6ft, 130lbs, 8units) = \\ \underline{P(6ft|F)P(130lbs|F)P(8units|F)P(F)} \\ \hline P(130lbs, 8units, 6ft) \end{array}$

•
$$P(130lbs|F) = \frac{1}{\sqrt{2\pi \times 550}} \times \exp{\frac{-(132.5 - 130)^2}{2 \times 550}} = .0167$$

Classify the Person

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.
- $\begin{array}{l} \cdot \ P(F|6ft, 130lbs, 8units) = \\ P(6ft|F)P(130lbs|F)P(8units|F)P(F) \\ \hline P(130lbs, 8units, 6ft) \end{array}$
- $P(130lbs|F) = \frac{1}{\sqrt{2\pi \times 550}} \times \exp{\frac{-(132.5 130)^2}{2 \times 550}} = .0167$
- Finally, we get probability of female given data is greater than the probability of class being male given data.