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Probabilistic View of Linear Regression

• Example function (black solid diagonal line) and its
predictive uncertainty at x = 60 (drawn as a Gaussian).

Figure 1: Probabilistic view of Linear Regression. Note that we
don’t have point estimates any longer.
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Probabilistic View of Linear Regression
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Figure 2: Dataset we will be using for this exercise
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Probabilistic View of Linear Regression
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Figure 3: Sample predictions we will be making (with variance)
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Probabilistic View of Linear Regression

• In this view, we consider a likelihood function

p(y|x) = N
(
y|f (x), σ2

)
where x ∈ RD and the inputs and y ∈ R are the noisy
function values, with the functional relationship between
x and y given by

y = f (x) + ε,

where ε ∼ N (0, σ2), is i.i.d. measurement noise with mean
0 and variance σ2.
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Parameter Estimation and MLE

• Suppose we are given a training set
D := {(x1, y1), (x2, y2), . . . , (xn, yN), consisting of N inputs
xn ∈ RD and corresponding targets yn ∈ R, n = 1, 2, 3, . . .N.
The graphical model for the same under the probabilistic
viewpoint is as given below.

Figure 4: Probabilistic Graphical Model for Linear Regression

In the above PGM, the observed random variables are
shaded and the deterministic random variables are
without circles.

5



Parameter Estimation and MLE

• Suppose we are given a training set
D := {(x1, y1), (x2, y2), . . . , (xn, yN), consisting of N inputs
xn ∈ RD and corresponding targets yn ∈ R, n = 1, 2, 3, . . .N.
The graphical model for the same under the probabilistic
viewpoint is as given below.

Figure 4: Probabilistic Graphical Model for Linear Regression

In the above PGM, the observed random variables are
shaded and the deterministic random variables are
without circles.

5



Parameter Estimation and MLE

• Suppose we are given a training set
D := {(x1, y1), (x2, y2), . . . , (xn, yN), consisting of N inputs
xn ∈ RD and corresponding targets yn ∈ R, n = 1, 2, 3, . . .N.
The graphical model for the same under the probabilistic
viewpoint is as given below.

Figure 4: Probabilistic Graphical Model for Linear Regression

In the above PGM, the observed random variables are
shaded and the deterministic random variables are
without circles.

5



Parameter Estimation and MLE

• Note that yi and yj are conditionally independent given
their respective inputs xi, xj so that the likelihood
factorizes according to

p(Y|X ,θ) = p (y1, . . . , yN|x1, . . . , xN,θ)

=
N∏
n=1

p (yn|xn,θ) =
N∏
n=1

N
(
yn|x>n θ, σ2

)
where X := {x1, x2, . . . , xn} and Y := {y1, y2, . . . , yn}.

• The likelihood and the factors p(yn|xn,θ) are Gaussian
due to the noise distribution.
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Prediction

• Note that once we have the optimal parameters θ∗ ∈ RD,
we can predict function values using this parameter
estimate. For an arbitrary test input x∗ the corresponding
distribution of y∗ then becomes the following:

p(y∗|x∗,θ) = N (y∗|x>∗ θ∗, σ2)
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Maximum Likelihood Estimate

• A typically widely used method to find the desired
parameters θML is maximum likelihood estimation, where
we find the parameters that maximize the likelihood.

θML = argmax
θ

p(Y|X ,θ)

• Important Remark: The likelihood p(y|x,θ) is not a
probability distribution in θ. It is a function of θ and need
not integrate to 1. Note that we compute likelihood for a
given Y and X .

• When we write p(Y|X ,θ), we are talking about the
conditional distribution of Y , given a fixed X and θ. In the
case of likelihood, θ is the variable.
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Motivation for the Log Transformation

• Typically differentiating products of functions is much
more complex than differentiating the sums of functions.

• When we want to maximize likelihood, we are trying to
maximize the product of several probabilities. This can
lead to numerical underflow.

• Since logarithm function is monotonic, maximizing the
logarithm of a function is equivalent to maximizing the
function.
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Negative Log Likelihood

• To find the optimal parameters, we minimize the negative
log-likelihood as follows

− log p(Y|X ,θ) = − log
N∏
n=1

p (yn|xn,θ) = −
N∑
n=1

log p (yn|xn,θ)

• Since the likelihood is Gaussian, we have,

log p (yn|xn,θ) = − 1
2σ2

(
yn − x>n θ

)2
+ const

where the constant is independent of θ.
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Negative Log Likelihood

• We therefore get negative log likelihood to be finally,

L(θ) := 1
2σ2

N∑
n=1

(
yn − x>n θ

)2
=

1
2σ2

(y − Xθ)>(y − Xθ) = 1
2σ2

‖y − Xθ‖2

and X := [x1, . . . , xN] ∈ RN×D and y := [y1, . . . , yN]> ∈ RN.
• Note that the nth row of X corresponds to training input xn.
• If we minimize the above quantity, we get,

θML =
(
X>X−1

)
X>y
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Visualising Likelihood
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Figure 5: Likelihood (not LL) for our data set

L(θ) =
n∏
i=1

1√
2πσ2

e−
(yi−ŷi)

2

2σ2
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Visualising MLE fit
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Figure 6: MLE prediction
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Estimating the noise variance

• Assumption so far: Noise variance σ2 was known.

• Now :Relax this assumption and obtain a maximum
likelihood estimator σ2ML for the noise variance.

• We use the same procedure as above: write down the
log-likelihood, compute its derivative with respect to
σ2 > 0, set it to 0 and obtain the needed estimate.
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Estimating the noise variance

log p
(
Y|X ,θ, σ2

)

=
N∑
n=1

logN
(
yn|xTnθ, σ2

)
=

N∑
n=1

(
− 1
2
log(2π)− 1

2
log σ2 − 1

2σ2
(
yn − xTnθ

)2)

= −N
2
log σ2 − 1

2σ2
N∑
n=1

(
yn − xTnθ

)2
+ const.
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Estimating the noise variance

Now, we take the partial derivative of the log-likelihood with
respect to σ2

∂ log p
(
Y|X ,θ, σ2

)
∂σ2

= − N
2σ2

+
1
2σ4

s = 0

N
2σ2

=
s
2σ4

Which is the same as

σ2ML =
s
N

=
1
N

N∑
n=1

(
yn − xTnθ

)2
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Maximum A Posteriori Estimation

• MLE is prone to overfitting.

• Need to mitigate the effects of huge parameter values.
How to do this?

• Answer: We place a prior p(θ) on the parameters.
• Example: Gaussian prior p(θ) = N (0, 1) on a parameter
which we expect to lie in the interval [-2, 2].

• Once we have a dataset X ,Y , instead of maximizing the
likelihood, we seek parameters to maximize the posterior
distribution p(θ|X ,Y).
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Visualizing Prior

We choose a prior as N2([0 0]T , I)
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Figure 7: Prior distribution
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Samples from Prior
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Figure 8: Samples from prior distribution
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Maximum A Posteriori Estimation

• From Bayes Theorem, we have

p(θ|X ,Y) =
p(Y|X ,θ)p(θ)

p(Y|X )

• Use the prior distribution N (0,b2In)
• Draw covariance matrix

20
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Maximum A Posteriori Estimation

• To find the MAP estimate, we follow the same steps as for
MLE, firstly by considerating the log-posterior.

log p(θ|X ,Y) = log p(Y|X ,θ) + log p(θ) + const

• We now minimze the negative log-posterior with respect
to θ to find θMAP

• We have,

θMAP ∈ argmin
θ

{− log p(Y|X ,θ)− log p(θ)}

21
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Maximum A Posteriori Estimation

• We have

θMAP ∈ argmin
θ

{− log p(Y|X ,θ)− log p(θ)}

• Now computing the gradient with respect to θ, we have

−d log p(θ|X ,Y)

dθ
= −d log p(Y|X ,θ)

dθ
− d log p(θ)

dθ

• Using the conjugate Gaussian Prior p(θ) = N (0,b2I) on
the parameters θ, we get the negative log posterior as
follows:

− log p(θ|X ,Y) =
1
2σ2

(y − Xθ)>(y − Xθ) + 1
2b2

θ>θ + const
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Maximum A Posteriori Estimation: Proof continued

− log p(θ|X ,Y) =
1
2σ2

(y − Xθ)>(y − Xθ) + 1
2b2

θ>θ + const

Here, the first term corresponds to the contribution from the
log-likelihood, and the second term originates from the
log-prior. The gradient of the log-posterior with respect to the
parameters θ is then

−d log p(θ|X ,Y)

dθ
=

1
σ2

(
θ>XTX − y>X

)
+

1
b2

θ>
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Maximum A Posteriori Estimation: Proof continued

We will find the MAP estimate θMAP by setting this gradient to
0T and solving for θMAP. We obtain

1
σ2

(
θ>X>X − y>X

)
+

1
b2

θ> = 0>

=⇒ θ>
(
1
σ2
X>X + 1

b2
I
)
− 1

σ2
y>X = 0>

=⇒ θ>
(
XTX + σ2

b2
I
)

= y>X

=⇒ θ> = y>X
(
XTX + σ2

b2
I
)−1

θMAP =
(
X>X +

σ2

b2
I
)−1X>y
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Maximum A Posteriori Estimation: Proof continued

We will find the MAP estimate θMAP by setting this gradient to
0T and solving for θMAP. We obtain
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Maximum A Posteriori Estimation

θMAP =
(
X>X +

σ2

b2
I
)−1X>y

If µ =
σ2

b2
, then

θMAP =
(
X>X + µI

)−1X>y
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Optimal MAP and MLE solutions
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Figure 9: MAP and MLE
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Maximum A Posteriori Estimation

• In the below example, we place a Gaussian prior
p(θ) = N (0, I) on the parameters θ and determine the
MAP estimates. For the lower order polynomial the effect
of the prior is not as pronounced as it is in the case of the
higher order polynomial and keeps the polynomial
relatively smooth in the second case.

Figure 10: Polynomial Regression and MAP Estimates. Degree 6
and 8 respectively for Figures (a) and (b).
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Maximum A Posteriori Estimation

• In the below example, we place a Gaussian prior
p(θ) = N (0, I) on the parameters θ and determine the
MAP estimates. For the lower order polynomial the effect
of the prior is not as pronounced as it is in the case of the
higher order polynomial and the prior keeps the second
polynomial relatively smooth.

Figure 11: Polynomial Regression and MAP Estimates. Degree 6
and 8 respectively for Figures (a) and (b).
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Bayesian Linear Regression

• In Bayesian Linear Regression, we consider the following
model:

Prior : p(θ) = N (m0, S0)

Likelihood : p(y|x,θ) = N (y|x>θ, σ2)

• As a PGM, we can represent it as follows:

Figure 12: Graphical Model for Bayesian Linear Regression
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Bayesian Linear Regression

• The full probabilistic model, i.e., the joint distribution of
observed and unobserved random variables, y and θ,
respectively, is

p(y,θ|x) = p(y|x, θ)p(θ)

• The posterior distribution in this case is given by,

p(θ|X ,Y) =
p(Y|X ,θ)p(θ)

p(Y|X )

• The denominator above is called as the marginal
likelihood or evidence, which ensures that the posterior is
normalized and is independent of the parameters. An
alternative way of writing the denominator is,

p(Y|X ) =

∫
p(Y|X ,θ)p(θ)dθ
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Parameter Posterior

• The parameter posterior can be computed in closed form
as follows:

p(θ|X ,Y) = N (θ|mN, SN)

SN =
(
S−10 + σ−2X>X

)−1

mN = SN
(
S−10 m0 + σ−2X>y

)

• The above posterior follows from:

Posterior p(θ|X ,Y) =
p(Y|X ,θ)p(θ)

p(Y|X )

Likelihood p(Y|X ,θ) = N
(
y|Xθ, σ2I

)
Prior p(θ) = N (θ|m0, S0)
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Parameter Posterior: Continued

Instead of looking at the product of the prior and the
likelihood, we can transform the problem into log-space and
solve for the mean and covariance of the posterior by
completing the squares.
The sum of the log-prior and the log-likelihood is

logN
(
y|Xθ, σ2I

)
+ logN (θ|m0, S0)

= − 1
2

(
σ−2(y − Xθ)>(y − Xθ) + (θ −m0)

> S−10 (θ −m0)
)
+ const

where the constant contains terms independent of θ. We will
ignore the constant in the following. We now factorize the
above equation
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Parameter Posterior: Continued

− 1
2
(
σ−2y>y − 2σ−2y>Xθ + θ>σ−2X>Xθ + θ>S−10 θ

−2m>
0 S

−1
0 θ +m>

0 S
−1
0 m0

)

= − 1
2
(
θ> (

σ−2X>X+ S−10
)
θ − 2(σ−2X>y + S−10 m0)

>θ
)
+ const

where the constant contains the black terms which are
independent of θ. The orange terms are terms that are linear
in θ, and the blue terms are the ones that are quadratic in θ.
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Parameter Posterior: Continued

We find that this equation is quadratic in θ. The fact that the
unnormalized log-posterior distribution is a (negative)
quadratic form implies that the posterior is Gaussian, i.e

p(θ|X ,Y) = exp(log p(θ|X ,Y)) ∝ exp(log p(Y|X ,θ) + log p(θ))

∝ exp

(
− 1
2

(
θ>

(
σ−2X>X+ S−10

)
θ − 2

(
σ−2X>y + S−10 m0

)>
θ

))
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Parameter Posterior: Continued

The remaining task is it to bring this (unnormalized) Gaussian
into the form that is proportional to N (θ|mN, SN), i.e., we need
to identify the mean mN and the covariance matrix SN . To do
this, we use the concept of completing the squares. The
desired log-posterior is

logN (θ|mN, SN) = − 1
2
(θ −mN)

> S−1N (θ −mN) + const

= − 1
2

(
θ>S−1N θ − 2m>

NS−1N θ +m>
NS−1N mN

)
Here, we factorized the quadratic form (θ −mN)

> S−1N (θ −mN)

into a term that is quadratic in θ alone (blue), a term that is
linear in θ (orange), and a constant term (black). This allows us
now to find SN and mN by matching the colored expressions
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Parameter Posterior: Continued

S−1N = X>σ−2IX + S−10

SN =
(
σ−2X>X + S−10

)−1

m>
NS−1N =

(
σ−2X>y + S−10 m0

)>

mN = SN
(
σ−2X>y + S−10 m0

)
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Samples from Posterior
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Figure 13: MAP and MLE
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Posterior Predictions

• The predictive distribution of y∗, at a test input x∗ using
the parameter prior p(θ) is computed as follows.

p (y∗|X ,Y, x∗) =
∫
p (y∗|x∗,θ)p(θ|X ,Y)dθ

=

∫
N

(
y∗|x>∗ θ, σ2

)
N (θ|mN, SN)dθ

= N
(
y∗|x>∗ mN, x>∗ SNx∗ + σ2

)
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Fully Bayesian Predictions
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Figure 14: MAP, MLE and Fully Bayesian
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Summary
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Bayesian Linear Regression Analysis

Figure 15: Bayesian linear regression and posterior over functions.
(a) training data; (b) posterior distribution over functions; different
shades correspond to different confidence intervals (c) Samples
from the posterior over functions.
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Bayesian Linear Regression Analysis
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Bayesian Linear Regression Analysis

Figure 16: Left panels: The mean of the Bayesian linear regression
model coincides with the MAP estimate. The predictive uncertainty is
the sum of the noise term and the posterior parameter uncertainty,
which depends on the location of the test input. Right panels:
sampled functions from the posterior distribution.
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