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Bayesian Machine Learning

• Allows us to incorporate prior knowledge into the model,
irrespective of what the data has to say.

• Particularly useful when we do not have a large amount of
data - use what we know about the model than depend
on the data.

• Also allows us to predict with confidence quantified
typically using variance.
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Bayes Rule

• Bayes Rule: P(A|B) = P(B|A)P(A)
P(B) .

• Example: You tested positive for a disease. But, the test is
only 99% accurate.

• P(Test = +ve|Disease = True) = 0.99
• P(Test = −ve|Disease = False) = 0.99
• Also, the disease is a rare one. Only one in 10,000 has it.
• Given the result of test is positive, what is the probability
that someone has the disease?
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Bayes Rule

• P(T|D) = 0.99
• P(T̄|D̄) = 0.99
• P(T|D̄) = 0.01
• P(T̄|D) = 0.01
• P(D) =10−4

• P(D̄) =1− 10−4

Given the above, calculate P(D|T).
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Problem

P(D|T) = P(T|D)P(D)
P(T) (1)
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Problem

P(D|T) = P(T|D)P(D)
P(T)

=
P(T|D)P(D)

P(T|D)P(D) + P(T|D̄)P(D̄)

(2)

=
(.99)

(
10−4

)
(.99) (10−4) + (.01) (1− 10−4)
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Problem

P(D|T) = P(T|D)P(D)
P(T)

=
P(T|D)P(D)

P(T|D)P(D) + P(T|D̄)P(D̄)

(3)

=
(.99)

(
10−4

)
(.99) (10−4) + (.01) (1− 10−4)

= 0.09 << 0.99
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Bayes Rule

• Notation: Let θ denote the parameters of the model and
let D denote observed data. From Bayes Rule, we have

P(θ|D) =
P(D|θ)P(θ)
P(D)

• In the above equation P(θ|D) is called the posterior,
P(D|θ) is called the likelihood, P(θ) is called the prior and
P(D) is called the evidence.
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Likelihood, Prior and Posterior

• Likelihood P(D|θ) quantifies how the current model
parameters describe the data. It is a function of θ. Higher
the value of P(D|θ), the better the model describes the
data.

• Prior P(θ) is the knowledge we incorporate into the model,
irrespective of what the data has to say. As an example, if
we have n model parameters, θ ∼ N (0, In) could be the
knowledge we are incorporating into the model.

• Posterior P(θ|D) is the probability that we assign to the
parameters after observing the data. Posterior takes into
account prior knowledge unlike likelihood.

• Posterior ∝ Likelihood × Prior
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Bayesian Learning is well suited for online learning

• In online learning, data points arrive one by one. We can
index this using timestamps. So we have one data point
for each timestamp.

• Initially no data: We only have P(θ), which is prior
knowledge which we have about the model parameters,
without observing any data.

• Suppose we observe D1 at timestamp 1. Now we have new
information. This knowledge is encoded as P(θ|D1).

• Now, D2 arrives at timestamp 2. Now we have P(θ|D1),
acting as the prior knowledge before we observe D2.

• Similarly, for timestamp n, we will have
P(θ|D1,D2,D3, . . .Dn−1) acting as the prior knowledge
before we observe Dn.
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Bayesian Learning is well suited for online learning

θ

P(θ)

P(θ|D1)

P(θ|D1,D2)

Figure 1: Online Learning: Variation of Prior as more data points
arrive.
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Aside on Bernoulli Likelihood

• Assume you have a coin and flip it ten times and get (H, H,
T, T, T, H, H, T, T, T).

• What is p(H)?
• We might think it to be: 4/10 = 0.4. But why?
• Answer 1: Probability defined as a measure of long
running frequencies

• Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=θ?

• Idea find MLE estimate for θ
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Aside on Bernoulli Likelihood

• p(H) = θ and p(T) = 1− θ

• What is the PMF for first observation P(D1 = x|θ), where x =
0 for Tails and x = 1 for Heads?

• P(D1 = x|θ) = θx(1− θ)(1−x)

• Verify the above: if x = 0 (Tails), P(D1 = x|θ) = 1− θ and if x
= 1 (Heads), P(D1 = x|θ) = θ

• What is P(D1,D2, ...,Dn|θ)?
• P(D1,D2, ...,Dn|θ) = P(D1θ)P(D2|θ)...P(Dn|θ)
• P(D1,D2, ...,Dn|θ) = θnh(1− θ)nt

• Log-likelihood = LL(θ) = nh log(θ) + nt log(1− θ)

• ∂LL(θ)
∂θ = 0 =⇒ nh

θ + nt
1−θ = 0 =⇒ θMLE =

nh
nh+nt
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Question: Is this maxima or minima?

∂2LL(θ)
∂θ2

=
−nH
θ2

+
−nT

(1− θ)2
∈ R−

Thus, the solution is a maxima.

Any issues with maximum likelihood estimate or MLE?

13



Question: Is this maxima or minima?

∂2LL(θ)
∂θ2

=
−nH
θ2

+
−nT

(1− θ)2
∈ R−

Thus, the solution is a maxima.

Any issues with maximum likelihood estimate or MLE?

13



Question: Is this maxima or minima?

∂2LL(θ)
∂θ2

=
−nH
θ2

+
−nT

(1− θ)2
∈ R−

Thus, the solution is a maxima.

Any issues with maximum likelihood estimate or MLE?

13



Maximum A Posteriori estimate (MAP)

• MLE does not handle prior knowledge: What if we know
that our coin is biased towards head?

• MLE can overfit: What is the probability of heads when we
have observed 6 heads and 0 tails?
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Maximum A Posteriori estimate (MAP)

Goal: Maximize the Posterior

θ̂MAP = argmax
θ

P(θ|D) (4)

θ̂MAP = argmax
θ

P(D|θ)P(θ) (5)
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