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- Particularly useful when we do not have a large amount of
data - use what we know about the model than depend
on the data.

- Also allows us to predict with confidence quantified
typically using variance.
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Bayes Rule

- Bayes Rule: P(A|B) = %

- Example: You tested positive for a disease. But, the test is
only 99% accurate.

- P(Test = +ve|Disease = True) = 0.99

- P(Test = —ve|Disease = False) = 0.99

- Also, the disease is a rare one. Only one in 10,000 has it.

- Given the result of test is positive, what is the probability
that someone has the disease?



Bayes Rule

P(T|D) = 0.99
P(T|D) = 0.99

- P(T|D) = 0.0

- P(T|D) = 0.0

- P(D) =10—*
P(D) =1—10~*

Given the above, calculate P(DI|T).






_ P(TID)P(D)
~ P(T|D)P(D) + P(T|D)P(D)

(.99) (107%)
(.99) (10=4) + (.01) (1 — 10—%)




_ P(TID)P(D)
~ P(T|D)P(D) + P(T|D)P(D)

_ (:99) (107) — 0.09 << 0.99
(99)(10-%) + (0N (1—10-%) '
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- Notation: Let # denote the parameters of the model and
let D denote observed data. From Bayes Rule, we have

P(DI0)P(6)

POID) = =S5

- In the above equation P(9|D) is called the posterior,
P(D|0) is called the likelihood, P(#) is called the prior and
P(D) is called the evidence.
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- Likelihood P(D|0) quantifies how the current model
parameters describe the data. It is a function of . Higher
the value of P(D|#), the better the model describes the
data.

- Prior P() is the knowledge we incorporate into the model,
irrespective of what the data has to say. As an example, if
we have n model parameters, 8 ~ N (0, ;) could be the
knowledge we are incorporating into the model.

- Posterior P(A|D) is the probability that we assign to the
parameters after observing the data. Posterior takes into
account prior knowledge unlike likelihood.

- Posterior o Likelihood x Prior
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Bayesian Learning is well suited for online learning

- In online learning, data points arrive one by one. We can
index this using timestamps. So we have one data point
for each timestamp.

- Initially no data: We only have P(#), which is prior
knowledge which we have about the model parameters,
without observing any data.

- Suppose we observe Dy at timestamp 1. Now we have new
information. This knowledge is encoded as P(0|D»).

- Now, D, arrives at timestamp 2. Now we have P(0|D»),
acting as the prior knowledge before we observe D;.

- Similarly, for timestamp n, we will have
P(6|D1, D,, D3, ... Dp—q) acting as the prior knowledge
before we observe D,,.



Bayesian Learning is well suited for online learning

— P(0)
—— P(0|Dy)
—— P(6|Dy,Dy)

Figure 1: Online Learning: Variation of Prior as more data points
arrive.
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Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H,
TTTHHTTT).

- What is p(H)?
- We might think it to be: 4/10 = 0.4. But why?

- Answer 1: Probability defined as a measure of long
running frequencies

- Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=6?

- |ldea find MLE estimate for 6

n
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Aside on Bernoulli Likelihood

- p(H)y=6andp(T)=1-190
- What is the PMF for first observation P(D; = x|6), where x =
0 for Tails and x = 1 for Heads?

- P(D1 = x|0) = (1 — )1

- Verify the above: if x = 0 (Tails), P(D; = x|0) = 1— 6 and if x
=1 (Heads), P(D1 = x|6) = 6

- What is P(D4, Dy, ..., Dy|6)?

« P(D1, D3, ..., Dn|0) = P(D10)P(D2|0)...P(Dn|6)

- P(Ds, Dy, ..., Dn|6) = " (1 — 6)™

- Log-likelihood = LL(0) = np log(8) + nt log(1 — 6)

. 86856()_0 — nh+1m =0 = Owr =

_Nh
Np+nt
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82LL(0) _ —Np n =l

002~ 2 (1-0)

Thus, the solution is a maxima.

e R_
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Question: Is this maxima or minima?

82LL(0) _ —Np n =l
202~ 62 ' (1-9)

> €R-

Thus, the solution is a maxima.

Any issues with maximum likelihood estimate or MLE?
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Maximum A Posteriori estimate (MAP)

- MLE does not handle prior knowledge: What if we know
that our coin is biased towards head?

- MLE can overfit: What is the probability of heads when we
have observed 6 heads and 0 tails?
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Maximum A Posteriori estimate (MAP)

Goal: Maximize the Posterior
Oupp = arg max P(6|D) (4)
0

Ouap = arg max P(D|0)P(0) (5)
0
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