Convex Functions

Nipun Batra
January 27, 2020
IIT Gandhinagar

Definition

- Convexity is defined on an interval $[\alpha, \beta]$
- The line segment joining $(a, f(a))$ and $(b, f(b))$ should be above or on the function f for all points in interval $[\alpha, \beta]$.

Example: $y=x^{2}$

Convex on the entire real line i.e. $(-\infty, \infty)$

Example: $y=|x|$

Convex on the entire real line i.e. $(-\infty, \infty)$

Example: $y=e^{x}$

Convex on the entire real line ie. $(-\infty, \infty)$

Example: $y=\log _{e} x$

Not convex on the entire real line ie. $(-\infty, \infty)$

Example: $y=x^{3}$

It is convex for the interval $[0, \infty)$

Example: $y=x^{3}$

It is concave for the interval $(-\infty, 0]$

Example: $y=x^{3}$

But, it is not convex for the interval $(-\infty, \infty)$

Mathematical Formulation

Function f is convex on set X, if $\forall x_{1}, x_{2} \in X$ and $\forall t \in[0,1]$

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

Question: Prove that $f(x)=x^{2}$ is convex

Question: Prove that $f(x)=x^{2}$ is convex

To prove:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

Question: Prove that $f(x)=x^{2}$ is convex

To prove:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

LHS $=f\left(t x_{1}+(1-t) x_{2}\right)=t^{2} x_{1}^{2}+(1-t)^{2} x_{2}^{2}+2 t(1-t) x_{1} x_{2}$
RHS $=t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)=t x_{1}^{2}+(1-t) x_{2}^{2}$

Question: Prove that $f(x)=x^{2}$ is convex

To prove:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

$$
\begin{aligned}
& \text { LHS }=f\left(t x_{1}+(1-t) x_{2}\right)=t^{2} x_{1}^{2}+(1-t)^{2} x_{2}^{2}+2 t(1-t) x_{1} x_{2} \\
& \text { RHS }=t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)=t x_{1}^{2}+(1-t) x_{2}^{2}
\end{aligned}
$$

Here,

$$
\begin{aligned}
\text { LHS }-\operatorname{RHS} & =\left(t^{2}-t\right) x_{1}^{2}+\left[(1-t)^{2}-(1-t)\right] x_{2}^{2}+2 t(1-t) x_{1} x_{2} \\
& =\left(t^{2}-t\right) x_{1}^{2}+\left(t^{2}-t\right) x_{2}^{2}-2\left(t^{2}-t\right) x_{1} x_{2} \\
& =\left(t^{2}-t\right)\left(x_{1}-x_{2}\right)^{2}
\end{aligned}
$$

Question: Prove that $f(x)=x^{2}$ is convex

To prove:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

LHS $=f\left(t x_{1}+(1-t) x_{2}\right)=t^{2} x_{1}^{2}+(1-t)^{2} x_{2}^{2}+2 t(1-t) x_{1} x_{2}$
RHS $=t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)=t x_{1}^{2}+(1-t) x_{2}^{2}$
Here,

$$
\begin{aligned}
\text { LHS }-\operatorname{RHS} & =\left(t^{2}-t\right) x_{1}^{2}+\left[(1-t)^{2}-(1-t)\right] x_{2}^{2}+2 t(1-t) x_{1} x_{2} \\
& =\left(t^{2}-t\right) x_{1}^{2}+\left(t^{2}-t\right) x_{2}^{2}-2\left(t^{2}-t\right) x_{1} x_{2} \\
& =\left(t^{2}-t\right)\left(x_{1}-x_{2}\right)^{2}
\end{aligned}
$$

Here, $\left(t^{2}-t\right) \leq 0$ since $t \in[0,1]$ and $\left(x_{1}-x_{2}\right)^{2} \geq 0$
Hence, LHS -RHS ≤ 0
Hence LHS \leq RHS
Hence proved.

Alternative ways to prove convexity

The Double-Derivative Test

If $f^{\prime \prime}(x)>0$, the function is convex.

For example,
$\frac{\partial^{2}\left(x^{2}\right)}{\partial x^{2}}=2>0 \Rightarrow x^{2}$ is a Convex function.

Alternative ways to prove convexity

The double derivate test for multi-parameter function is equal to using the Hessian Matrix

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is convex iff its $n \times n$ Hessian Matrix is positive semidefinite for all posible values of ($x_{1}, x_{2}, \ldots, x_{n}$)

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{\partial j} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Alternative ways to prove convexity

Show that $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is convex.

Alternative ways to prove convexity

Show that $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is convex.

$$
H=\left[\begin{array}{ll}
\frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{1}^{2}} & \frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Alternative ways to prove convexity

Show that $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is convex.

$$
H=\left[\begin{array}{ll}
\frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{1}^{2}} & \frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Eigen Values of H are 2 and $2>0 \Rightarrow \mathrm{H}$ is positive semi-definite. Hence, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is convex.

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta)=\|y-X \theta\|^{2}$

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta)=\|y-X \theta\|^{2}$
We will use the double derivate (Hessian)

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta)=\|y-X \theta\|^{2}$
We will use the double derivate (Hessian)

$$
\frac{d f}{d \theta}=\frac{d\left(\left\|y^{2}\right\|-2 y^{\top} x \theta+\|X \theta\|^{2}\right)}{d \theta}=-2 y^{\top} X+2(X \theta)^{\top} X
$$

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta)=\|y-X \theta\|^{2}$

We will use the double derivate (Hessian)

$$
\begin{aligned}
& \frac{d f}{d \theta}=\frac{d\left(\left\|y^{2}\right\|-2 y^{\top} X \theta+\|X \theta\|^{2}\right)}{d \theta}=-2 y^{\top} X+2(X \theta)^{\top} X \\
& \frac{d^{2} f}{d \theta^{2}}=H=2 X^{\top} X
\end{aligned}
$$

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta)=\|y-X \theta\|^{2}$

We will use the double derivate (Hessian)

$$
\begin{aligned}
& \frac{d f}{d \theta}=\frac{d\left(\left\|y^{2}\right\|-2 y^{\top} X \theta+\|X \theta\|^{2}\right)}{d \theta}=-2 y^{\top} X+2(X \theta)^{\top} X \\
& \frac{d^{2} f}{d \theta^{2}}=H=2 X^{\top} X
\end{aligned}
$$

$X^{\top} X$ is positive semi-definite for any $X \in \mathbb{R}^{m \times n}$. Hence, linear least squares function is convex.

Properties of Convex Functions

- If $f(x)$ is convex, then $k f(x)$ is also convex, for some constant k

Properties of Convex Functions

- If $f(x)$ is convex, then $k f(x)$ is also convex, for some constant k
- If $f(x)$ and $g(x)$ are convex, then $f(x)+g(x)$ is also convex.

Properties of Convex Functions

- If $f(x)$ is convex, then $k f(x)$ is also convex, for some constant k
- If $f(x)$ and $g(x)$ are convex, then $f(x)+g(x)$ is also convex.

Using this we can say that,

- $(y-x \theta)^{\top}(y-x \theta)+\theta^{\top} \theta$ is convex
- $(y-x \theta)^{T}(y-x \theta)+|\theta|$ is convex

