Decision Trees

Nipun Batra and teaching staff January 8, 2021

IIT Gandhinagar

Discrete Input Discrete Output

The need for interpretability

How to maintain trust in AI

Beyond developing initial trust, however, creators of AI also must work to maintain that trust. Siau and Wang suggest seven ways of "developing continuous trust" beyond the initial phases of product development:

- Usability and reliability. AI "should be designed to operate easily and intuitively," Siau and Wang write. "There should be no unexpected downtime or crashes."
- Collaboration and communication. Al developers want to create systems that perform autonomously, without human involvement. Developers must focus on creating Al applications that smoothly and easily collaborate and communicate with humans.
- Sociability and bonding. Building social activities into AI applications is one way to strengthen trust. A robotic dog that can recognize its owner and show affection is one example, Siau and Wang write.
- Security and privacy protection. Al applications rely on large data sets, so
 ensuring privacy and security will be crucial to establishing trust in the
 applications.

Training Data

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning a Complicated Neural Network

Learnt Decision Tree

Medical Diagnosis using Decision Trees

Figure 1: Source: Improving medical decision trees by combining relevant health-care criteria

Leo Brieman

Leo Brein	Leo Breiman 1928-2005		Follow			VIEW ALL	
	itistics, <u>UC Berkeley</u> t stat.berkeley.edu - Homepage				All	Since 2015	
	Statistics Machine Learning			Citations h-index i10-index	142857 51 80	68736 33 46	
TITLE		CITED BY	YEAR		-	17000	
Random forests L Breiman Machine learning 45 (1), 5-32		53816	2001		пĿ	12750	
Classification and Regression Tree L Breiman, JH Friedman, RA Olshen, CJ S CRC Press, New York		43992 *	1999	- 111	ш	4250	
Classification and regression trees L Breiman Chapman & Hall/CRC		43992 *	1984	2013 2014 2015	2016 2017 2018 2	019 2020 U	
Bagging predictors L Breiman Machine learning 24 (2), 123-140		22742	1996				
Statistical Modeling: The Two Cutu L Breiman	res	2788 *	2003				
Statistical modeling: The two cultur L Breiman Statistical Science 16 (3), 199-231	es (with comments and a rejoinder by the author)	2772	2001				
Estimating optimal transformations	for multiple regression and correlation	2096	1985				

Optimal Decision Tree

Volume 5, number 1

INFORMATION PROCESSING LETTERS

May 1976

CONSTRUCTING OPTIMAL BINARY DECISION TREES IS NP-COMPLETE*

Laurent HYAFIL IRIA – Laboria, 78150 Rocquencourt, France

and

Ronald L. RIVEST Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Massachusetts 02139, USA

Received 7 November 1975, revised version received 26 January 1976

Binary decision trees, computational complexity, NP-complete

Core idea: At each level, choose an attribute that gives **biggest** estimated performance gain!

Figure 2: Greedy!=Optimal

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

• For examples, we have 9 Yes, 5 No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?

• Yes!

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!
- Key insights: Problem is "easier" when there is lesser disagreement

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!
- Key insights: Problem is "easier" when there is lesser disagreement
- Need some statistical measure of "disagreement"

Statistical measure to characterize the (im)purity of examples

Statistical measure to characterize the (im)purity of examples $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$

Statistical measure to characterize the (im)purity of examples

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

Statistical measure to characterize the (im)purity of examples

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

Avg. # of bits to transmit

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

• Can we use Outlook as the root node?

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Can we use Outlook as the root node?
- When Outlook is overcast, we always Play and thus no "disagreement"

Reduction in entropy by partitioning examples (S) on attribute A

$$Gain(S, A) \equiv Entropy (S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy (S_v)$$

• Create a root node for tree

- Create a root node for tree
- If all examples are +/-, return root with label = +/-

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - $\bullet \ \mathsf{Root} \gets \mathsf{A}$

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - Root $\leftarrow A$
 - For each value (v) of A

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - Root $\leftarrow A$
 - For each value (v) of A
 - Add new tree branch : $\mathsf{A}=\mathsf{v}$

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - Root $\leftarrow A$
 - For each value (v) of A
 - Add new tree branch : A = v
 - $\bullet \ \ \mathsf{Examples}_v \colon \mathsf{subset} \ \mathsf{of} \ \mathsf{examples} \ \mathsf{that} \ \mathsf{A} = \mathsf{v}$

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - Root $\leftarrow A$
 - For each value (v) of A
 - Add new tree branch : $\mathsf{A}=\mathsf{v}$
 - $\bullet \ \ \mathsf{Examples}_v : \ \mathsf{subset} \ \mathsf{of} \ \mathsf{examples} \ \mathsf{that} \ \mathsf{A} = \mathsf{v}$
 - If Examples, is empty: add leaf with label = most common value of Target Attribute

- Create a root node for tree
- If all examples are +/-, return root with label = +/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A \leftarrow attribute from Attributes which best classifies Examples
 - Root $\leftarrow A$
 - For each value (v) of A
 - Add new tree branch : $\mathsf{A}=\mathsf{v}$
 - Examples_v: subset of examples that $\mathsf{A}=\mathsf{v}$
 - If Examples, is empty: add leaf with label = most common value of Target Attribute
 - Else: ID3 (Examples_v, Target attribute, Attributes A)

Root Node (empty)

Training Data

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

We have 14 examples in S: 5 No, 9 Yes

Entropy(S) =
$$-p_{No} \log_2 p_{No} - p_{Yes} \log_2 p_{Yes}$$

= $-(5/14) \log_2(5/14) - (9/14) \log_2(9/14) = 0.94$

Information Gain for Outlook

Outlook	Play
Sunny	No
Sunny	No
Overcast	Yes
Rain	Yes
Rain	Yes
Rain	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rain	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rain	No

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3 No

Entropy = $(-3/5)\log_2(3/5) (-2/5)\log_2(2/5) =$ 0.971

	Outlook	Play			
-	Sunny	No			L
	Sunny	No		Outlook	Play
	Sunny	No		Overcast	Yes
	Sunny	Yes		Overcast	Yes
	Sunny	Yes		Overcast	Yes
We have 2 Yes, 3 No		0	Overcast	Yes	
Entropy =			V	Ve have 4 Y	és, 0 N
(-3/5)log ₂ (3/5) -				Entropy	= 0
$(-2/5)\log_2(2/5) =$					
0.971					

Outlook	Play					Outlook	Play
Sunny	No			L		Rain	Yes
Sunny	No		Outlook	Play		Rain	Yes
Sunny	No		Overcast	Yes		Rain	No
Sunny	Yes		Overcast	Yes		Rain	Yes
Sunny	Yes		Overcast	Yes		Rain	No
We have 2 Y	es, 3 No	0	Overcast	Yes	V	Ve have 3 N	′es, 2 No
Entropy =		V	We have 4 Yes, 0 No		0	Entrop	y =
(-3/5)log ₂ (3/5) -			Entropy = 0			(-3/5)log ₂	(3/5) -
$(-2/5)\log_2(2/5) =$						$(-2/5)\log_2($	2/5) =
0.97	1					0.97	1

$$Gain(S, Outlook) = Entropy (S) - \sum_{v \in \{Rain, Sunny, Windy\}} \frac{|S_v|}{|S|} Entropy (S_v)$$

 $\begin{aligned} & \text{Gain (S, Outlook)} = \text{Entropy (S) -(5/14)* Entropy(S_{\text{Sunny}})-} \\ & (4/14)* \text{Entropy (S_{\text{overcast}})-(5/14)* Entropy(S_{\text{Rain}})} \\ &= 0.940 - 0.347 - 0.347 \\ &= 0.246 \end{aligned}$

Information Gain

Learnt Decision Tree

Day	Temp	Humidity	v Windy∥Pla	
D1	Hot	High	Weak	No
D2	Hot	High	Strong Weak	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Day	Temp	Humidity	ty Windy Pla	
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

 Gain(S_{Outlook=Sunny}, Temp) = Entropy(3 Yes, 2 No) -(2/5)*Entropy(2 No, 0 Yes) -(2/5)*Entropy(1 No, 1 Yes) -(1/5)*Entropy(1 Yes)

Day	Temp	Humidity	ty Windy Pla	
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

- Gain(S_{Outlook=Sunny}, Temp) = Entropy(3 Yes, 2 No) -(2/5)*Entropy(2 No, 0 Yes) -(2/5)*Entropy(1 No, 1 Yes) -(1/5)*Entropy(1 Yes)
- Gain(S_{Outlook=Sunny}, Humidity) = Entropy(3 Yes, 2 No) -(2/5)*Entropy(2 Yes) -(3/5)*Entropy(3 No) ⇒ maximum possible for the set

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

- Gain(S_{Outlook=Sunny}, Temp) = Entropy(3 Yes, 2 No) -(2/5)*Entropy(2 No, 0 Yes) -(2/5)*Entropy(1 No, 1 Yes) -(1/5)*Entropy(1 Yes)
- Gain(S_{Outlook=Sunny}, Humidity) = Entropy(3 Yes, 2 No) -(2/5)*Entropy(2 Yes) -(3/5)*Entropy(3 No) ⇒ maximum possible for the set
- Gain(S_{Outlook=Sunny}, Windy) = Entropy(3 Yes, 2 No) -(3/5)*Entropy(2 No, 1 Yes) -(2/5)*Entropy(1 No, 1 Yes)

Learnt Decision Tree

Day	Temp	Humidity	ity Windy Pl	
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong Weak	No
D10	Mild	Normal		Yes
D14	Mild	High	Strong	No

• The attribute Windy gives the highest information gain

Learnt Decision Tree

Prediction for Decision Tree

Just walk down the tree!

Prediction for Decision Tree

Just walk down the tree!

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ?

Prediction for Decision Tree

Just walk down the tree!

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ? No

Apply the same rules, except when depth limit reached, the leaf node is assigned the "most" common occuring value in that path.

Apply the same rules, except when depth limit reached, the leaf node is assigned the "most" common occuring value in that path.

What is depth-0 tree (no decision) for the examples?

Apply the same rules, except when depth limit reached, the leaf node is assigned the "most" common occuring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

Apply the same rules, except when depth limit reached, the leaf node is assigned the "most" common occuring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Apply the same rules, except when depth limit reached, the leaf node is assigned the "most" common occuring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Discrete Input, Real Output

Modified Dataset

Day	Outlook	Temp	Humidity	Wind	Minutes Played
D1	Sunny	Hot	High	Weak	20
D2	Sunny	Hot	High	Strong	24
D3	Overcast	Hot	High	Weak	40
D4	Rain	Mild	High	Weak	50
D5	Rain	Cool	Normal	Weak	60
D6	Rain	Cool	Normal	Strong	10
D7	Overcast	Cool	Normal	Strong	4
D8	Sunny	Mild	High	Weak	10
D9	Sunny	Cool	Normal	Weak	60
D10	Rain	Mild	Normal	Weak	40
D11	Sunny	Mild	High	Strong	45
D12	Overcast	Mild	High	Strong	40
D13	Overcast	Hot	Normal	Weak	35
D14	Rain	Mild	High	Strong	20

Measure of Impurity for Regression?

Measure of Impurity for Regression?

• Any guesses?

- Any guesses?
- Standard Deviation/Variance

- Any guesses?
- Standard Deviation/Variance
- STDEV(S) = 18.3, Variance(S)=335.3

- Any guesses?
- Standard Deviation/Variance
- STDEV(S) = 18.3, Variance(S)=335.3
- Information Gain analogoue?

- Any guesses?
- Standard Deviation/Variance
- STDEV(S) = 18.3, Variance(S) = 335.3
- Information Gain analogoue?
- Reduction in variance (weighted)

Gain by splitting on Wind

Wind	Minutes Played
Weak	20
Strong	24
Weak	40
Weak	50
Weak	60
Strong	10
Strong	4
Weak	10
Weak	60
Weak	40
Strong	45
Strong	40
Weak	35
Strong	20

Table 1: VAR(S)=335.3

Weak	20
Weak	40
Weak	50
Weak	60
Weak	10
Weak	60
Weak	40
Weak	35

14/ 1

~ ~

Table 2: Weighted

 $VAR(S_{Wind=Weak} = (8/14)*317 = 181)$

Wind	Minutes Played
Strong	24
Strong	10
Strong	4
Strong	45
Strong	40
Strong	20

Table 3: Weighted

 $VAR(S_{Wind=Strong}=(6/14)*261=112)$

Learnt Tree

Learnt Tree

Real Input Discrete Output

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute
- Find attribute values where changes happen
- For example, splits are: Temp \not{i} (48+60)/2 and Temp \not{i} (80+90)/2

Example

Example (DT of depth 1)

Example (DT of depth 2)

Example (DT of depth 3)

Example (DT of depth 4)

Example (DT of depth 5)

Example (DT of depth 6)

Example (DT of depth 7)

Example (DT of depth 8)

Example (DT of depth 9)

