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The need for interpretability
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Training Data

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Learning a Complicated Neural Network
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak
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Medical Diagnosis using Decision Trees

Figure 1: Source: Improving medical decision trees by combining

relevant health-care criteria
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Leo Brieman
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Optimal Decision Tree
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Greedy Algorithm

Core idea: At each level, choose an attribute that gives biggest

estimated performance gain!

Figure 2: Greedy!=Optimal
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

• For examples, we have 9

Yes, 5 No

• Would it be trivial if we had

14 Yes or 14 No?

• Yes!

• Key insights: Problem is

“easier” when there is lesser

disagreement

• Need some statistical

measure of “disagreement”
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Entropy

Statistical measure to characterize the (im)purity of examples

H(X ) = −
∑n

i=1 p(xi ) log p(xi )
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• Can we use Outlook as the

root node?

• When Outlook is overcast,

we always Play and thus no

“disagreement”
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Information Gain

Reduction in entropy by partitioning examples (S) on attribute A

Gain(S ,A) ≡ Entropy (S)−
∑

v∈Values(A)

|Sv |
|S |

Entropy (Sv )
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ID3 (Examples, Target Attribute, Attributes)

• Create a root node for tree

• If all examples are +/-, return root with label = +/-

• If attributes = empty, return root with most common value of

Target Attribute in Examples

• Begin

• A ← attribute from Attributes which best classifies Examples

• Root ← A

• For each value (v) of A

• Add new tree branch : A = v

• Examplesv: subset of examples that A = v

• If Examplesvis empty: add leaf with label = most common

value of Target Attribute

• Else: ID3 (Examplesv, Target attribute, Attributes - A)
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Learnt Decision Tree

Root Node (empty)
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Training Data

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Entropy calculated

We have 14 examples in S : 5 No, 9 Yes

Entropy(S) = − pNo log2 pNo − pYes log2 pYes

= −(5/14) log2(5/14)− (9/14) log2(9/14) = 0.94
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Information Gain for Outlook

Outlook Play

Sunny No
Sunny No
Overcast Yes
Rain Yes
Rain Yes
Rain No
Overcast Yes
Sunny No
Sunny Yes
Rain Yes
Sunny Yes
Overcast Yes
Overcast Yes
Rain No
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Information Gain for Outlook

Outlook Play

Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes

We have 2 Yes, 3 No

Entropy =

(-3/5)log2(3/5) -

(-2/5)log2(2/5) =

0.971

Outlook Play

Overcast Yes
Overcast Yes
Overcast Yes
Overcast Yes

We have 4 Yes, 0 No

Entropy = 0

Outlook Play

Rain Yes
Rain Yes
Rain No
Rain Yes
Rain No

We have 3 Yes, 2 No

Entropy =

(-3/5)log2(3/5) -

(-2/5)log2(2/5) =
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Information Gain

Gain(S ,Outlook) = Entropy (S)−
∑

v∈{Rain,Sunny ,Windy}

|Sv |
|S |

Entropy (Sv )

Gain (S, Outlook) = Entropy (S) -(5/14)* Entropy(SSunny)-

(4/14)* Entropy (Sovercast)−(5/14)* Entropy(SRain)

= 0.940 - 0.347 - 0.347

= 0.246
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Information Gain

Outlook Humidity Wind Temperature

0.25

0.15

4.8 · 10−2

2.9 · 10−2

Information Gain
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Learnt Decision Tree

Outlook

? Yes ?

Sunny

Overcast
Rain
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy Play

D1 Hot High Weak No
D2 Hot High Strong No
D8 Mild High Weak No
D9 Cool Normal Weak Yes
D11 Mild Normal Strong Yes

• Gain(SOutlook=Sunny, Temp) = Entropy(3 Yes, 2 No) -

(2/5)*Entropy(2 No, 0 Yes) -(2/5)*Entropy(1 No, 1 Yes) -

(1/5)*Entropy(1 Yes)

• Gain(SOutlook=Sunny, Humidity) = Entropy(3 Yes, 2 No) -

(2/5)*Entropy(2 Yes) -(3/5)*Entropy(3 No) =⇒ maximum

possible for the set

• Gain(SOutlook=Sunny, Windy) = Entropy(3 Yes, 2 No) -

(3/5)*Entropy(2 No, 1 Yes) -(2/5)*Entropy(1 No, 1 Yes)
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Learnt Decision Tree

Outlook

Humidity Yes ?

No Yes

Sunny

Overcast
Rain

High Normal
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Calling ID3 on (Outlook=Rain)

Day Temp Humidity Windy Play

D4 Mild High Weak Yes
D5 Cool Normal Weak Yes
D6 Cool Normal Strong No
D10 Mild Normal Weak Yes
D14 Mild High Strong No

• The attribute Windy gives the highest information gain
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak
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Prediction for Decision Tree

Just walk down the tree!

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot

Temp> is ?

No
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Prediction for Decision Tree

Just walk down the tree!

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot

Temp> is ?

No
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Prediction for Decision Tree

Just walk down the tree!

Outlook

Humidity Yes Wind
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Sunny

Overcast
Rain
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Limiting Depth of Tree

Assuming if you were only allowed depth-1 trees, how would it look

for the current dataset?

Apply the same rules, except when depth limit reached, the leaf

node is assigned the “most” common occuring value in that path.

What is depth-0 tree (no decision) for the examples?

Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Outlook

No Yes Yes

Sunny

Overcast
Rain
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Discrete Input, Real Output



Modified Dataset

Day Outlook Temp Humidity Wind Minutes Played

D1 Sunny Hot High Weak 20
D2 Sunny Hot High Strong 24
D3 Overcast Hot High Weak 40
D4 Rain Mild High Weak 50
D5 Rain Cool Normal Weak 60
D6 Rain Cool Normal Strong 10
D7 Overcast Cool Normal Strong 4
D8 Sunny Mild High Weak 10
D9 Sunny Cool Normal Weak 60
D10 Rain Mild Normal Weak 40
D11 Sunny Mild High Strong 45
D12 Overcast Mild High Strong 40
D13 Overcast Hot Normal Weak 35
D14 Rain Mild High Strong 20
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Measure of Impurity for Regression?

• Any guesses?

• Standard Deviation/Variance

• STDEV(S) = 18.3, Variance(S)=335.3

• Information Gain analogoue?

• Reduction in variance (weighted)

29
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Gain by splitting on Wind

Wind Minutes Played

Weak 20
Strong 24
Weak 40
Weak 50
Weak 60
Strong 10
Strong 4
Weak 10
Weak 60
Weak 40
Strong 45
Strong 40
Weak 35
Strong 20

Table 1: VAR(S)=335.3

Wind Minutes Played

Weak 20
Weak 40
Weak 50
Weak 60
Weak 10
Weak 60
Weak 40
Weak 35

Table 2: Weighted

VAR(SWind=Weak=(8/14)*317=181)

Wind Minutes Played

Strong 24
Strong 10
Strong 4
Strong 45
Strong 40
Strong 20

Table 3: Weighted

VAR(SWind=Strong=(6/14)*261=112)
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Information Gain

Outlook Humidity Wind Temp

−50

−28

41

−63

Information Gain
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Learnt Tree
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Learnt Tree
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Real Input Discrete Output



Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

• How do you find splits?

• Sort by attribute

• Find attribute values where changes happen

• For example, splits are: Temp ¿ (48+60)/2 and Temp ¿

(80+90)/2
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Example

4 2 0 2 4
X1

2

0

2

4

6
X2
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Example (DT of depth 1)
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Example (DT of depth 2)
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Example (DT of depth 3)
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Example (DT of depth 4)
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Example (DT of depth 5)
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Example (DT of depth 6)
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Example (DT of depth 7)
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Example (DT of depth 8)
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Example (DT of depth 9)
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