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Example 1

Let us consider the dataset given below
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Example 1

What would be the prediction for decision tree with depth 0?
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Example 1

Prediction for decision tree with depth 0.
Horizontal dashed line shows the predicted Y value. It is the
average of Y values of all datapoints.
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Example 1

What would be the decision tree with depth 1?

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Feature, X

0

1

2

La
be

l, 
Y

4



Example 1

Decision tree with depth 1

X[0] <= 2.5
mse = 0.667
samples = 6
value = 1.0

mse = 0.0
samples = 2
value = 0.0

True

mse = 0.25
samples = 4
value = 1.5

False
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Example 1

The Decision Boundary
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Example 1

What would be the decision tree with depth 2 ?
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Example 1

Decision tree with depth 2

X[0] <= 2.5
mse = 0.667
samples = 6
value = 1.0

mse = 0.0
samples = 2
value = 0.0

True

X[0] <= 4.5
mse = 0.25
samples = 4
value = 1.5

False

mse = 0.0
samples = 2
value = 1.0

mse = 0.0
samples = 2
value = 2.0
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Example 1

The Decision Boundary
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Objective function

Here, Feature is denoted by X and Label by Y.
Let the “decision boundary” or “split” be at X = S.
Let the region X < S, be region R1.
Let the region X > S, be region R2.
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Objective function

Here, Feature is denoted by X and Label by Y.
Let the “decision boundary” or “split” be at X = S.
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Then, let
C1 = Mean (Yi|Xi ∈ R1)
C2 = Mean (Yi|Xi ∈ R2)
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Objective function

Here, Feature is denoted by X and Label by Y.
Let the “decision boundary” or “split” be at X = S.
Let the region X < S, be region R1.
Let the region X > S, be region R2.

Then, let
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Objective function

Here, Feature is denoted by X and Label by Y.
Let the “decision boundary” or “split” be at X = S.
Let the region X < S, be region R1.
Let the region X > S, be region R2.

Then, let
C1 = Mean (Yi|Xi ∈ R1)
C2 = Mean (Yi|Xi ∈ R2)
Loss =

∑
i
((Yi − C1|Xi ∈ R1)2 + (Yi − C2|Xi ∈ R2)2)

Our objective is to minimize the loss and find
minS

∑
i

(
(Yi − C1|Xi ∈ R1)2 + (Yi − C2|Xi ∈ R2)2

)
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How to find optimal split “S”?
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How to find optimal split “S”?

1. Sort all datapoints (X,Y) in increasing order of X.
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How to find optimal split “S”?

1. Sort all datapoints (X,Y) in increasing order of X.

2. Evaluate the loss function for all

S =
Xi+Xi+1

2

and the select the S with minimum loss.
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A Question!

Draw a regression tree for Y = sin(X), 0 ≤ X ≤ 2π
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A Question!

Dataset of Y = sin(X), 0 ≤ X ≤ 7 with 10,000 points
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A Question!

Regression tree of depth 1

X[0] <= 3.033
mse = 0.463

samples = 10000
value = 0.035

mse = 0.086
samples = 4333

value = 0.657

True

mse = 0.23
samples = 5667
value = -0.441

False
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A Question!

Decision Boundary
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A Question!

Regression tree with no depth limit is too big to fit in a slide.
It has of depth 20. The decision boundaries are in figure below.
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Summary

• Interpretability an important goal
• Decision trees: well known interpretable models
• Learning optimal tree is hard
• Greedy approach:
• Recursively split to maximize “performance gain”
• Issues:

• Can overfit easily!
• Empirically not as powerful as other methods
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A Question!

What would be the decision boundary of a decision tree
classifier?
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Decision Boundary for a tree with depth 1
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(a) Decision Boundary

X[0] <= 4.0
entropy = 1.0
samples = 12
value = [6, 6]

entropy = 0.65
samples = 6
value = [5, 1]

True

entropy = 0.65
samples = 6
value = [1, 5]

False

(b) Decision Tree
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Decision Boundary for a tree with no depth limit
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(c) Decision Boundary

X[0] <= 4.0
entropy = 1.0
samples = 12
value = [6, 6]

X[1] <= 1.5
entropy = 0.65
samples = 6
value = [5, 1]

True

X[1] <= 1.5
entropy = 0.65
samples = 6
value = [1, 5]

False

entropy = 0.0
samples = 3
value = [3, 0]

X[0] <= 1.5
entropy = 0.918

samples = 3
value = [2, 1]

entropy = 0.0
samples = 2
value = [2, 0]

entropy = 0.0
samples = 1
value = [0, 1]

entropy = 0.0
samples = 3
value = [0, 3]

X[0] <= 6.5
entropy = 0.918

samples = 3
value = [1, 2]

entropy = 0.0
samples = 1
value = [1, 0]

entropy = 0.0
samples = 2
value = [0, 2]

(d) Decision Tree
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision
boundaries.
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision
boundaries.

But, sometimes this can lead to poor generalization
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An example

Consider the dataset below
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(f) Test Set
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Underfitting

Underfitting is also known as high bias, since it has a very
biased incorrect assumption.
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(g) Decision Boundary

X[1] <= 1.5
entropy = 0.964
samples = 36

value = [22, 14]

entropy = 0.0
samples = 6
value = [6, 0]

True

X[1] <= 5.5
entropy = 0.997
samples = 30

value = [16, 14]

False

entropy = 0.98
samples = 24

value = [10, 14]

entropy = 0.0
samples = 6
value = [6, 0]

(h) Decision Tree
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Overfitting

Overfitting is also known as high variance, since very small
changes in data can lead to very different models.
Decision tree learned has depth of 10.
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Intution for Variance

A small change in data can lead to very different models.

Dataset 1
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Dataset 2
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Intution for Variance

X[1] <= 1.5
entropy = 0.964
samples = 36

value = [22, 14]

entropy = 0.0
samples = 6
value = [6, 0]

True

X[1] <= 5.5
entropy = 0.997
samples = 30

value = [16, 14]

False

X[0] <= 1.5
entropy = 0.98
samples = 24

value = [10, 14]

entropy = 0.0
samples = 6
value = [6, 0]

entropy = 0.0
samples = 4
value = [4, 0]

X[0] <= 5.5
entropy = 0.881
samples = 20
value = [6, 14]

X[0] <= 2.5
entropy = 0.544
samples = 16
value = [2, 14]

entropy = 0.0
samples = 4
value = [4, 0]

entropy = 0.0
samples = 4
value = [0, 4]

X[0] <= 4.5
entropy = 0.65
samples = 12
value = [2, 10]

X[1] <= 2.5
entropy = 0.811

samples = 8
value = [2, 6]

entropy = 0.0
samples = 4
value = [0, 4]

entropy = 0.0
samples = 2
value = [0, 2]

X[1] <= 4.5
entropy = 0.918

samples = 6
value = [2, 4]

X[1] <= 3.5
entropy = 1.0
samples = 4
value = [2, 2]

entropy = 0.0
samples = 2
value = [0, 2]

X[0] <= 3.5
entropy = 1.0
samples = 2
value = [1, 1]

X[0] <= 3.5
entropy = 1.0
samples = 2
value = [1, 1]

entropy = 0.0
samples = 1
value = [1, 0]

entropy = 0.0
samples = 1
value = [0, 1]

entropy = 0.0
samples = 1
value = [0, 1]

entropy = 0.0
samples = 1
value = [1, 0]

X[1] <= 1.5
entropy = 0.964
samples = 36

value = [22, 14]

entropy = 0.0
samples = 6
value = [6, 0]

True

X[1] <= 5.5
entropy = 0.997
samples = 30

value = [16, 14]

False

X[0] <= 1.5
entropy = 0.98
samples = 24

value = [10, 14]

entropy = 0.0
samples = 6
value = [6, 0]

entropy = 0.0
samples = 4
value = [4, 0]

X[0] <= 5.5
entropy = 0.881
samples = 20
value = [6, 14]

X[1] <= 3.5
entropy = 0.544
samples = 16
value = [2, 14]

entropy = 0.0
samples = 4
value = [4, 0]

X[1] <= 2.5
entropy = 0.811

samples = 8
value = [2, 6]

entropy = 0.0
samples = 8
value = [0, 8]

entropy = 0.0
samples = 4
value = [0, 4]

X[0] <= 2.5
entropy = 1.0
samples = 4
value = [2, 2]

entropy = 0.0
samples = 1
value = [0, 1]

X[0] <= 4.5
entropy = 0.918

samples = 3
value = [2, 1]

entropy = 0.0
samples = 2
value = [2, 0]

entropy = 0.0
samples = 1
value = [0, 1]
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A Good Fit
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entropy = 0.0
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X[0] <= 5.5
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samples = 16
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entropy = 0.0
samples = 4
value = [4, 0]

28



Accuracy vs Depth Curve
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As depth increases, train accuracy improves
As depth increases, test accuracy improves till a point
At very high depths, test accuracy is not good (overfitting).
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve : Underfitting

The highlighted region is the underfitting region.
Model is too simple (less depth) to learn from the data.
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Accuracy vs Depth Curve : Overfitting

The highlighted region is the overfitting region.
Model is complex (high depth) and hence also learns the
anomalies in data.
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Accuracy vs Depth Curve

The highlighted region is the good fit region.
We want to maximize test accuracy while being in this region.
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The big question!?

How to find the optimal depth for a decision tree?
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The big question!?

How to find the optimal depth for a decision tree?

Use cross-validation!
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Our General Training Flow

Train Data Test Data

 Model

Training

Predicting

Actual Labels

Predicted 
Labels

Error Metric
Calculation

Accuracy
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K-Fold cross-validation: Utilise full dataset for testing

Train Test

Train Test Train

Train Test Train

Test Train

FOLD 1

FOLD 2

FOLD 3

FOLD 4
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The Validation Set

Train Data Test Data

 Model
Depth = 1

Training

Predicting

Actual Labels

Predicted 
Labels

Error Metric
Calculation

Accuracy

Validation

 Model
Depth = 2

 Model
Depth = 3

Accuracy on 
validation set

Validation Accuracy
Depth 1 : 70%
Depth 2 : 90%
Depth 3 : 80%

Select model having 
highest validation 

accuracy
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Nested Cross Validation

Divide your training set into K equal parts.
Cyclically use 1 part as “validation set” and the rest for training.
Here K = 4

Train Validation

Train Validation Train

Train Validation Train

Validation Train

FOLD 1

FOLD 2

FOLD 3

FOLD 4
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Nested Cross Validation

Average out the validation accuracy across all the folds
Use the model with highest validation accuracy

Train Validation

Train Validation Train

Train Validation Train

Validation Train

FOLD 1

FOLD 2

FOLD 3

FOLD 4

Average out 
Validation Accuracy 
across all folds.

Select the 
hyperparameter for 
which the model 
gives the highest 
average validation 
accuracy
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Next time: Ensemble Learning

• How to combine various models?
• Why to combine multiple models?
• How can we reduce bias?
• How can we reduce variance?
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