Ensemble Learning

Nipun Batra and teaching staff January 13, 2020

IIT Gandhinagar

Use multiple models for prediction.

Most winning entries of Kaggle competition using ensemble learning.

Use multiple models for prediction.

Most winning entries of Kaggle competition using ensemble learning.

Example:

Classifier 1 - Good Classifier 2 - Good Classifier 3 - Bad

Using Majority Voting, we predict Good.

Use multiple models for prediction. Most winning entries of Kaggle competition using ensemble learning.

Example:

- Regressor 1 20
- Regressor 2 30
- Regressor 3 30

Using Average, we predict $\frac{80}{3}$

Intuition

Three reasons why ensembles make sense:

1) Statistical: Sometimes if data is less, many competing hypothesis can be learnt.

Intuition

Three reasons why ensembles make sense:

1) Statistical: Sometimes if data is less, many competing hypothesis can be learnt.

Eg. Depending on criteria and initialisation, we can learn many decision trees for the same data.

1) Statistical: Sometimes if data is less, many competing hypothesis can be learnt.

Eg. Depending on criteria and initialisation, we can learn many decision trees for the same data.

2) Computational: Some classifiers/regressors can get stuck in local optima. Computationally learning the "best" hypothesis can be non-trivial.

1) Statistical: Sometimes if data is less, many competing hypothesis can be learnt.

Eg. Depending on criteria and initialisation, we can learn many decision trees for the same data.

2) Computational: Some classifiers/regressors can get stuck in local optima. Computationally learning the "best" hypothesis can be non-trivial.

Eg. Decision Trees employ greedy critera

1) Statistical: Sometimes if data is less, many competing hypothesis can be learnt.

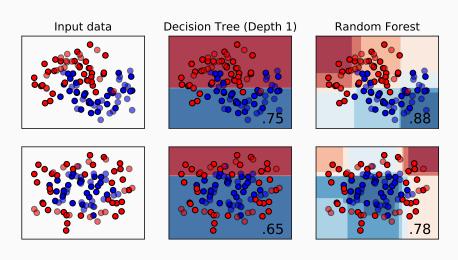
Eg. Depending on criteria and initialisation, we can learn many decision trees for the same data.

2) Computational: Some classifiers/regressors can get stuck in local optima. Computationally learning the "best" hypothesis can be non-trivial.

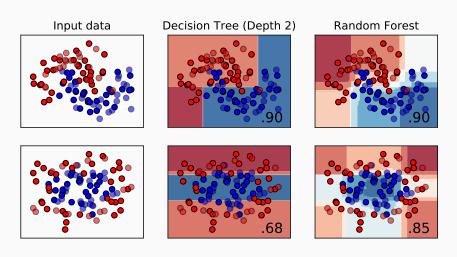
Eg. Decision Trees employ greedy critera

3) Representational: Some classifiers/regressors can not learn the true form/representation.

Representation of Limited Depth DTs vs RFs



Representation of Limited Depth DTs vs RFs



Necessary and Sufficient Conditions

2) An accurate classier:

2) An accurate classier: is one that has an error rate of better than random guessing on new x values.

2) An accurate classier: is one that has an error rate of better than random guessing on new x values.

3) Two classifiers are diverse:

2) An accurate classier: is one that has an error rate of better than random guessing on new x values.

3) Two classifiers are diverse: if they make different errors on new data points

Imagine that we have an ensemble of three classifiers (h_1, h_2, h_3) and consider a new case x.

Imagine that we have an ensemble of three classifiers (h_1, h_2, h_3) and consider a new case x.

If the three classifiers are identical, i.e. not diverse, then when $h_1(x)$ is wrong $h_2(x)$ and $h_3(x)$ will also be wrong.

- Imagine that we have an ensemble of three classifiers (h_1, h_2, h_3) and consider a new case x.
- If the three classifiers are identical, i.e. not diverse, then when $h_1(x)$ is wrong $h_2(x)$ and $h_3(x)$ will also be wrong.

However, if the errors made by the classifiers are uncorrelated, then when $h_1(x)$ is wrong, $h_2(x)$ and $h_3(x)$ may be correct, so that a majority vote will correctly class.

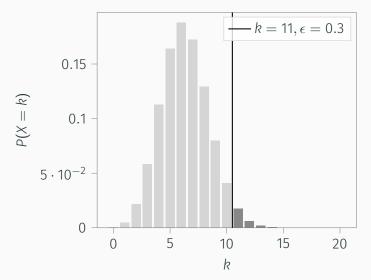
Intuition for Ensemble Methods from Quantitative Perspective

Error Probability of each model = ε = 0.3

 $Pr(\text{ensemble being wrong}) = {}^{3}C_{2}(\varepsilon^{2})(1-\varepsilon)^{3-2} + {}^{3}C_{3}(\varepsilon^{3})(1-\varepsilon)^{3-3}$ = 0.19 < 0.3

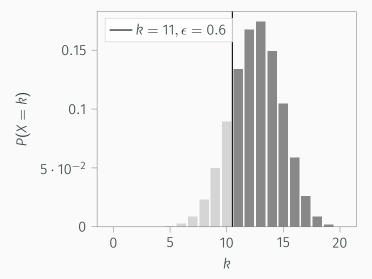
Some calculations

Probability that majority vote (11 out of 21) is wrong = 0.026



Some calculations

Probability that majority vote (11 out of 21) is wrong = 0.826



Where does ensemble learning not work well?

Where does ensemble learning not work well?

- The base model is bad.
- All models give similar prediction or the models are highly correlated.

Also known as Bootstrap Aggregation.

How to learn different classifiers while feeding in the same data?

How to learn different classifiers while feeding in the same data?

Think about cross-validation!

How to learn different classifiers while feeding in the same data?

Think about cross-validation!

We will create multiple datasets from our single dataset using *"sampling with replacement"*.

Consider our dataset has n samples, $D_1, D_2, D_3, \ldots, D_n$. For each model in the ensemble, we create a new dataset of size n by sampling uniformly with replacement.

```
Consider our dataset has n samples, D_1, D_2, D_3, \ldots, D_n.
For each model in the ensemble, we create a new dataset of size n by sampling uniformly with replacement.
```

```
Round 1 : D_1, D_3, D_6, D_1, \dots, D_n
Round 2 : D_2, D_4, D_1, D_{80}, \dots, D_3
```

```
Consider our dataset has n samples, D_1, D_2, D_3, \ldots, D_n.
For each model in the ensemble, we create a new dataset of size n by sampling uniformly with replacement.
```

```
Round 1 : D_1, D_3, D_6, D_1, \dots, D_n
Round 2 : D_2, D_4, D_1, D_{80}, \dots, D_3
```

Repetition of samples is possible.

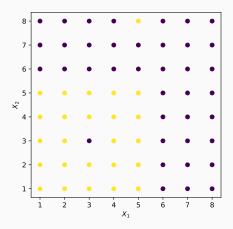
Consider our dataset has n samples, $D_1, D_2, D_3, \ldots, D_n$. For each model in the ensemble, we create a new dataset of size n by sampling uniformly with replacement.

```
Round 1 : D_1, D_3, D_6, D_1, \dots, D_n
Round 2 : D_2, D_4, D_1, D_{80}, \dots, D_3
```

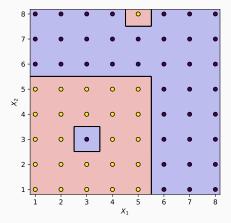
Repetition of samples is possible.

We can train the same classifier/models on each of these different "Bagging Rounds".

Consider the dataset below. Points (3,3) and (5,8) are anomalies.



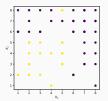
Decision Boundary for decision tree with depth 6.



Lets use bagging with ensemble of 5 trees.

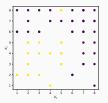
Lets use bagging with ensemble of 5 trees.

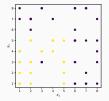
Round - 1



Lets use bagging with ensemble of 5 trees.

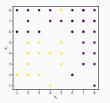
Round - 1

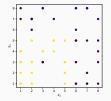


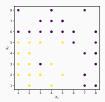


Lets use bagging with ensemble of 5 trees.

Round - 1



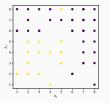


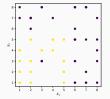


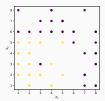
Lets use bagging with ensemble of 5 trees.

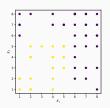
Round - 1

Round - 3





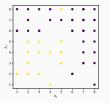


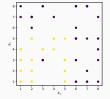


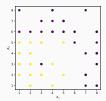
Lets use bagging with ensemble of 5 trees.

Round - 1

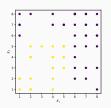
Round - 3

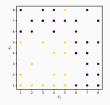


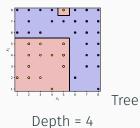


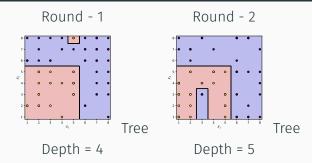


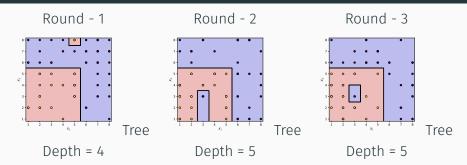
Round - 4

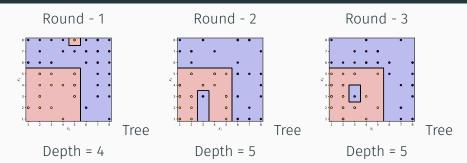


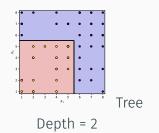


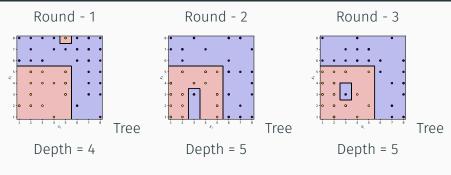




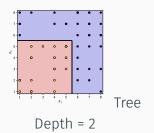


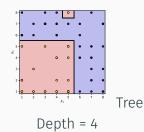




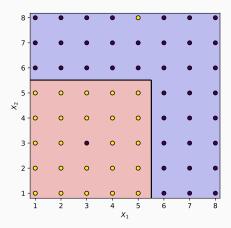


Round - 4





Using majority voting to combine all predictions, we get the decision boundary below.



Summary

- We take "strong" learners and combine them to reduce variance.
- All learners are independent of each other.

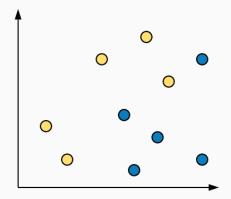
• We take "weak" learners and combine them to reduce bias.

- $\cdot\,$ We take "weak" learners and combine them to reduce bias.
- All learners are incrementally built.

- We take "weak" learners and combine them to reduce bias.
- All learners are incrementally built.
- Incremental building: Incrementally try to classify "harder" samples correctly.

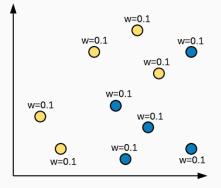
Consider we have a dataset of *N* samples.

Sample *i* has weight w_i . There are *M* classifers in ensemble.



Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

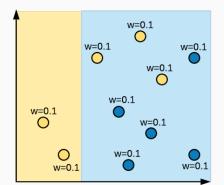
1. Initialize weights of data samples, $w_i = \frac{1}{N}$



Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

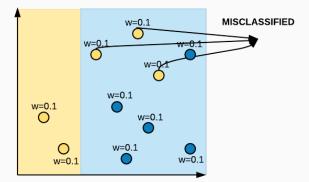
2.1 Learn classifier using current weights w's



Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

2.1 Learn classifier using current weights w's

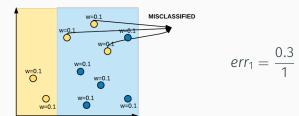


Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

2.1 Learn classifier using current weights w'_i s $\sum w_i(incorrect)$

2.2 Compute the weighted error, $err_m = -\frac{i}{m}$

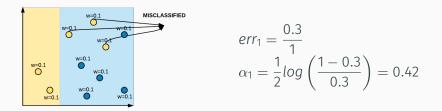


Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

2.1 Learn classifier using current weights w'_i s

2.2 Compute the weighted error, $err_m = \frac{\sum_{i} w_i(incorrect)}{\sum_{i} w_i}$ 2.3 Compute $\alpha_m = \frac{1}{2}log_e \left(\frac{1 - err_m}{err_m}\right)$



Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

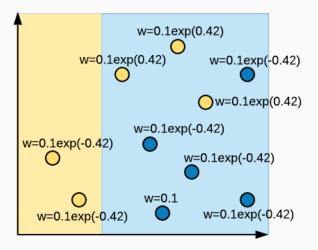
1. Initialize weights of data samples, $w_i = \frac{1}{N}$

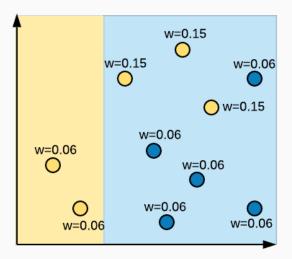
2.1 Learn classifier using current weights w's

2.2 Compute the weighted error, $err_m = \frac{\sum_{i}^{i} w_i(incorrect)}{\sum_{i} w_i}$

2.3 Compute
$$\alpha_m = \frac{1}{2}log_e\left(\frac{1 - err_m}{err_m}\right)$$

2.4 For samples which were predicted correctly, $w_i = w_i e^{-\alpha_m}$ 2.5 For samples which were predicted incorrectly, $w_i = w_i e^{\alpha_m}$





Consider we have a dataset of *N* samples.

Sample *i* has weight w_i . There are *M* classifers in ensemble.

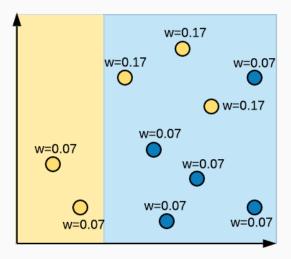
1. Initialize weights of data samples, $w_i = \frac{1}{N}$

2.1 Learn classifier using current weights w's

2.2 Compute the weighted error, $err_m = \frac{\sum_{i}^{i} w_i(incorrect)}{\sum_{i} w_i}$

2.3 Compute
$$\alpha_m = \frac{1}{2}log_e\left(\frac{1 - err_m}{err_m}\right)$$

2.4 For samples which were predicted correctly, $w_i = w_i e^{-\alpha_m}$ 2.5 For samples which were predicted incorrectly, $w_i = w_i e^{\alpha_m}$ 2.6 Normalize w'_i s to sum up to 1.



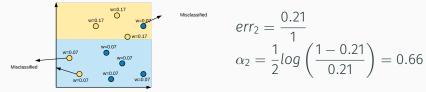
Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

2.1 Learn classifier using current weights w'_i s

2.2 Compute the weighted error, $err_m = \frac{\sum_{i} w_i(incorrect)}{\sum_{i} w_i}$

2.3 Compute
$$\alpha_m = \frac{1}{2} log_e \left(\frac{1 - err_m}{err_m} \right)$$



Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

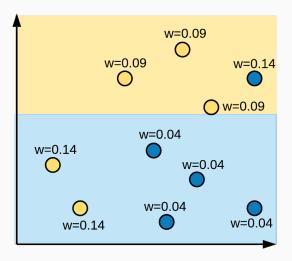
1. Initialize weights of data samples, $w_i = \frac{1}{N}$

2.1 Learn classifier using current weights w's

2.2 Compute the weighted error, $err_m = \frac{\sum_{i}^{i} w_i(incorrect)}{\sum_{i} w_i}$

2.3 Compute
$$\alpha_m = \frac{1}{2} log_e \left(\frac{1 - err_m}{err_m} \right)$$

2.4 For samples which were predicted correctly, $w_i = w_i e^{-\alpha_m}$ 2.5 For samples which were predicted incorrectly, $w_i = w_i e^{\alpha_m}$



Consider we have a dataset of *N* samples.

Sample *i* has weight w_i . There are *M* classifers in ensemble.

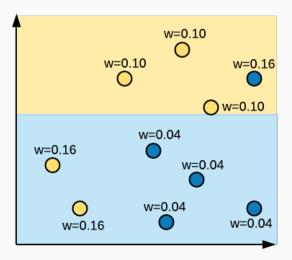
1. Initialize weights of data samples, $w_i = \frac{1}{N}$

2.1 Learn classifier using current weights w'_i s

2.2 Compute the weighted error, $err_m = \frac{\sum_{i}^{i} w_i(incorrect)}{\sum_{i} w_i}$

2.3 Compute
$$\alpha_m = \frac{1}{2}log_e\left(\frac{1 - err_m}{err_m}\right)$$

2.4 For samples which were predicted correctly, $w_i = w_i e^{-\alpha_m}$ 2.5 For samples which were predicted incorrectly, $w_i = w_i e^{\alpha_m}$ 2.6 Normalize w'_i s to sum up to 1.



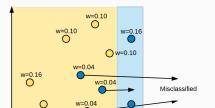
Consider we have a dataset of *N* samples. Sample *i* has weight *w_i*. There are *M* classifers in ensemble.

- 1. Initialize weights of data samples, $w_i = \frac{1}{N}$
- 2. For m = 1...M

2.1 Learn classifier using current weights w'_i s $\sum w_i$ (incorrect)

2.2 Compute the weighted error, $err_m = \frac{1}{i}$

2.3 Compute
$$\alpha_m = \frac{1}{2} log_e \left(\frac{1 - err_m}{err_m} \right)$$



$$err_{3} = \frac{0.12}{1}$$

$$\alpha_{3} = \frac{1}{2}log\left(\frac{1-0.12}{0.12}\right) = 0.99$$
36

S W

Intuitively, after each iteration, importance of wrongly classified samples is increased by increasing their weights and importance of correctly classified samples is decreased by decreasing their weights.

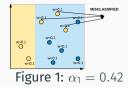
Testing

Testing

Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))

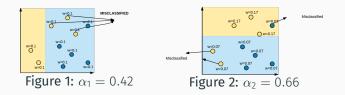
Testing

Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))



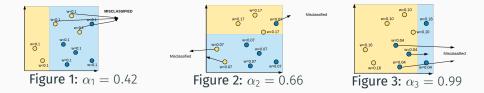
Testing

Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + . . . + α_M (Pred. Clf M))



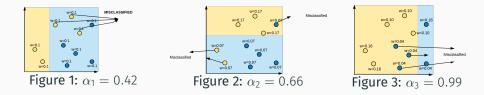
Testing

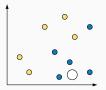
Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))



Testing

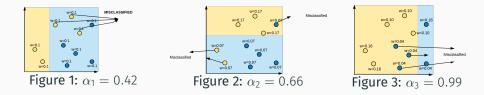
Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))

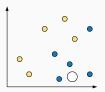




Testing

Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))

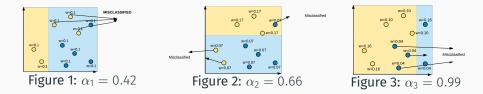


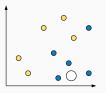


Let us say, yellow class is +1 and blue class is -1

Testing

Final Prediction = SIGN(α_1 (Pred. of Clf. 1) + α_2 (Pred. Clf. 2) + ... + α_M (Pred. Clf M))

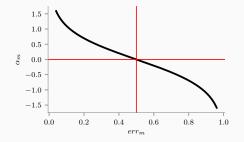




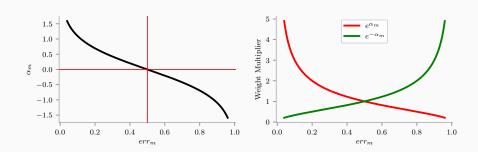
Let us say, yellow class is +1 and blue class is -1 Prediction = SIGN(0.42*-1 + 0.66*-1 + 0.99*+1) = Negative = blue

Intuition behind weight update formula

Intuition behind weight update formula



Intuition behind weight update formula



It is an ensemble of decision trees, where each tree is trained on randomly-selected features.

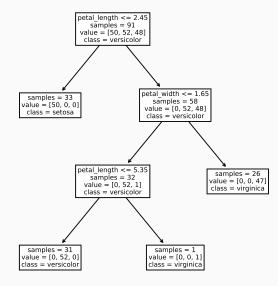
As features are randomly selected, we learn decorrelated trees and helps in reducing variance.

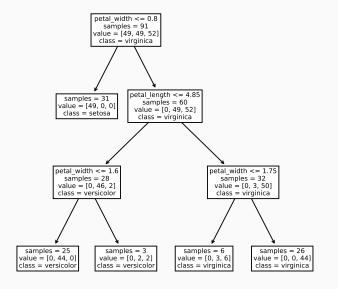
- for tree in $[1, \ldots, number of trees]$
 - For each split, select "*m*" features from total available *M* features and train a decision tree on selected features

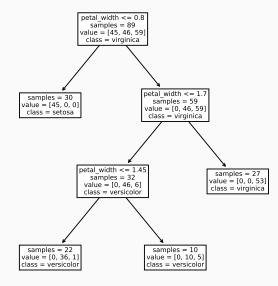
Dataset

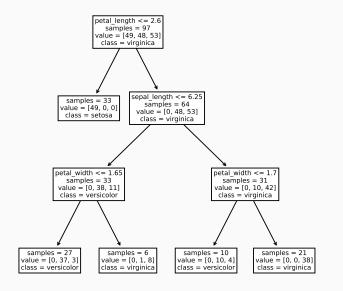
	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

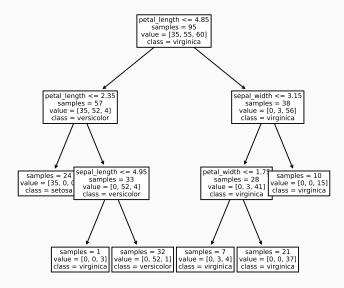
150 rows × 5 columns



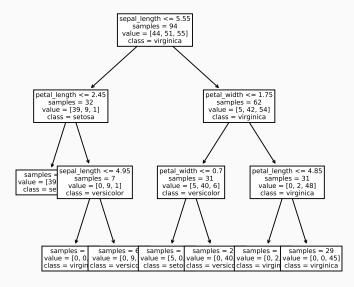


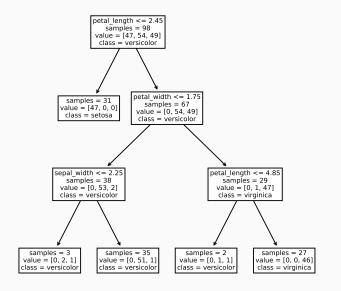


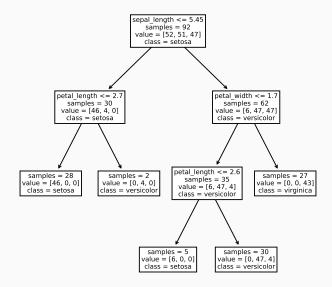


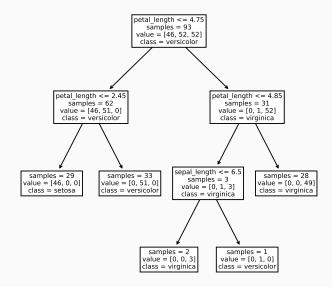


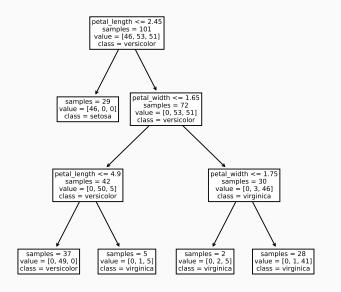
47



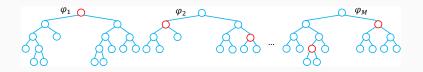








Feature Importance¹



Importance of variable X_j for an ensemble of M trees φ_m is:

$$\operatorname{Imp}(X_j) = \frac{1}{M} \sum_{m=1}^{M} \sum_{t \in \varphi_m} 1(j_t = j) \left[p(t) \Delta i(t) \right],$$

where j_t denotes the variable used at node t, $p(t) = N_t/N$ and $\Delta i(t)$ is the impurity reduction at node t:

$$\Delta i(t) = i(t) - \frac{N_{t_L}}{N_t}i(t_L) - \frac{N_{t_r}}{N_t}i(t_R)$$

¹Slide Courtesy Gilles Louppe

Computed Feature Importance

