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Ensemble Methods

Use multiple models for prediction.
Most winning entries of Kaggle competition using ensemble
learning.
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Ensemble Methods

Use multiple models for prediction.
Most winning entries of Kaggle competition using ensemble
learning.

Example:
Classifier 1 - Good
Classifier 2 - Good
Classifier 3 - Bad

Using Majority Voting, we predict Good.

1



Ensemble Methods

Use multiple models for prediction.
Most winning entries of Kaggle competition using ensemble
learning.

Example:
Regressor 1 - 20
Regressor 2 - 30
Regressor 3 - 30

Using Average, we predict 80
3
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Intuition

Three reasons why ensembles make sense:

1) Statistical: Sometimes if data is less, many competing
hypothesis can be learnt.

Eg. Depending on criteria and initialisation, we can learn many
decision trees for the same data.

2) Computational: Some classifiers/regressors can get stuck in
local optima. Computationally learning the “best” hypothesis
can be non-trivial.

Eg. Decision Trees employ greedy critera

3) Representational: Some classifiers/regressors can not learn
the true form/representation.
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Representation of Limited Depth DTs vs RFs

Input data

.75

Decision Tree (Depth 1)

.88

Random Forest

.65 .78
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Representation of Limited Depth DTs vs RFs

Input data

.90

Decision Tree (Depth 2)

.90

Random Forest

.68 .85
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Necessary and Sufficient Conditions

1)A necessary and sufficient condition for an ensemble of
classiers to be more accurate than any of its individual
members is if the classiers are accurate and diverse.

2) An accurate classier: is one that has an error rate of better
than random guessing on new x values.

3) Two classifiers are diverse: if they make different errors on
new data points
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Necessary and Sufficient Conditions

Imagine that we have an ensemble of three classifiers
(h1,h2,h3) and consider a new case x.

If the three classifiers are identical, i.e. not diverse, then when
h1(x) is wrong h2(x) and h3(x) will also be wrong.

However, if the errors made by the classifiers are uncorrelated,
then when h1(x) is wrong, h2(x) and h3(x) may be correct, so
that a majority vote will correctly class.
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Intuition for Ensemble Methods from Quantitative Perspective

Error Probability of each model = ε = 0.3

Pr(ensemble being wrong) = 3C2(ε2)(1−ε)3−2+3C3(ε3)(1−ε)3−3

= 0.19 ≤ 0.3
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Some calculations

0 5 10 15 20
0

5 · 10−2

0.1

0.15

k

P(
X
=
k)

Probability that majority vote (11 out of 21) is wrong = 0.026

k = 11, ε = 0.3
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Some calculations

0 5 10 15 20
0

5 · 10−2

0.1

0.15

k

P(
X
=
k)

Probability that majority vote (11 out of 21) is wrong = 0.826

k = 11, ε = 0.6
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Ensemble Methods

Where does ensemble learning not work well?
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Ensemble Methods

Where does ensemble learning not work well?

• The base model is bad.
• All models give similar prediction or the models are highly
correlated.

10



Bagging

Also known as Bootstrap Aggregation.
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Bagging

Also known as Bootstrap Aggregation.
Key idea : Reduce Variance

How to learn different classifiers while feeding in the same
data?

Think about cross-validation!

We will create multiple datasets from our single dataset using
“sampling with replacement”.
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Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.
For each model in the ensemble, we create a new dataset of
size n by sampling uniformly with replacement.
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Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.
For each model in the ensemble, we create a new dataset of
size n by sampling uniformly with replacement.

Round 1 : D1,D3,D6,D1, . . . ,Dn
Round 2 : D2,D4,D1,D80, . . . ,D3...

Repetition of samples is possible.
We can train the same classifier/models on each of these
different “Bagging Rounds”.
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Bagging : Classification Example

Consider the dataset below. Points (3,3) and (5,8) are
anomalies.

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8
X 2
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Bagging : Classification Example

Decision Boundary for decision tree with depth 6.

1 2 3 4 5 6 7 8
X1
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6

7

8
X 2
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Bagging : Classification Example

Lets use bagging with ensemble of 5 trees.
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Bagging : Classification Example
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Bagging : Classification Example

Using majority voting to combine all predictions, we get the
decision boundary below.
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Bagging

Summary

• We take “strong” learners and combine them to reduce
variance.

• All learners are independent of each other.
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Boosting

• We take “weak” learners and combine them to reduce bias.

• All learners are incrementally built.
• Incremental building: Incrementally try to classify “harder”
samples correctly.
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

20



Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

21



Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

22



Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

23



Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

2.2 Compute the weighted error, errm =

∑
i
wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
1− errm
errm

)

err1 =
0.3
1

α1 =
1
2
log

(
1− 0.3
0.3

)
= 0.42
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′
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2.2 Compute the weighted error, errm =

∑
i
wi(incorrect)∑

i
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2.3 Compute αm =
1
2
loge

(
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errm

)
2.4 For samples which were predicted correctly, wi = wie−αm

2.5 For samples which were predicted incorrectly, wi = wieαm
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Boosting : AdaBoost
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

2.2 Compute the weighted error, errm =

∑
i
wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
1− errm
errm

)
2.4 For samples which were predicted correctly, wi = wie−αm

2.5 For samples which were predicted incorrectly, wi = wieαm

2.6 Normalize w′
is to sum up to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

2.2 Compute the weighted error, errm =

∑
i
wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
1− errm
errm

)

err2 =
0.21
1

α2 =
1
2
log

(
1− 0.21
0.21

)
= 0.66
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

2.2 Compute the weighted error, errm =

∑
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wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
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)
2.4 For samples which were predicted correctly, wi = wie−αm

2.5 For samples which were predicted incorrectly, wi = wieαm
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.
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∑
i
wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
1− errm
errm

)
2.4 For samples which were predicted correctly, wi = wie−αm

2.5 For samples which were predicted incorrectly, wi = wieαm

2.6 Normalize w′
is to sum up to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1
N

2. For m = 1 . . .M
2.1 Learn classifier using current weights w′

is

2.2 Compute the weighted error, errm =

∑
i
wi(incorrect)∑

i
wi

2.3 Compute αm =
1
2
loge

(
1− errm
errm

)

err3 =
0.12
1

α3 =
1
2
log

(
1− 0.12
0.12

)
= 0.99

36



Boosting: Adaboost

Intuitively, after each iteration, importance of wrongly
classified samples is increased by increasing their weights and
importance of correctly classified samples is decreased by
decreasing their weights.
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Boosting: Adaboost

Testing

Final Prediction = SIGN(α1(Pred. of Clf. 1) + α2(Pred. Clf. 2) + . . .
+ αM(Pred. Clf M))

Figure 1: α1 = 0.42 Figure 2: α2 = 0.66 Figure 3: α3 = 0.99

Let us say, yellow class is +1
and blue class is -1
Prediction = SIGN(0.42*-1 +
0.66*-1 + 0.99*+1) = Negative =
blue
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Intuition behind weight update formula
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Random Forest

It is an ensemble of decision trees, where each tree is trained
on randomly-selected features.

As features are randomly selected, we learn decorrelated trees
and helps in reducing variance.
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Random Forest

• for tree in [1, . . . , number of trees ]
• For each split, select “m” features from total available M
features and train a decision tree on selected features
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Dataset
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Decision Tree # 0

samples = 31
value = [0, 52, 0]
class = versicolor

samples = 1
value = [0, 0, 1]
class = virginica

petal_length <= 5.35
samples = 32

value = [0, 52, 1]
class = versicolor

samples = 26
value = [0, 0, 47]
class = virginica

samples = 33
value = [50, 0, 0]

class = setosa

petal_width <= 1.65
samples = 58

value = [0, 52, 48]
class = versicolor

petal_length <= 2.45
samples = 91

value = [50, 52, 48]
class = versicolor
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Decision Tree # 1

samples = 25
value = [0, 44, 0]
class = versicolor

samples = 3
value = [0, 2, 2]

class = versicolor

samples = 6
value = [0, 3, 6]
class = virginica

samples = 26
value = [0, 0, 44]
class = virginica

petal_width <= 1.6
samples = 28

value = [0, 46, 2]
class = versicolor

petal_width <= 1.75
samples = 32

value = [0, 3, 50]
class = virginica

samples = 31
value = [49, 0, 0]

class = setosa

petal_length <= 4.85
samples = 60

value = [0, 49, 52]
class = virginica

petal_width <= 0.8
samples = 91

value = [49, 49, 52]
class = virginica
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Decision Tree # 2

samples = 22
value = [0, 36, 1]
class = versicolor

samples = 10
value = [0, 10, 5]
class = versicolor

petal_width <= 1.45
samples = 32

value = [0, 46, 6]
class = versicolor

samples = 27
value = [0, 0, 53]
class = virginica

samples = 30
value = [45, 0, 0]

class = setosa

petal_width <= 1.7
samples = 59

value = [0, 46, 59]
class = virginica

petal_width <= 0.8
samples = 89

value = [45, 46, 59]
class = virginica
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Decision Tree # 3

samples = 27
value = [0, 37, 3]
class = versicolor

samples = 6
value = [0, 1, 8]
class = virginica

samples = 10
value = [0, 10, 4]
class = versicolor

samples = 21
value = [0, 0, 38]
class = virginica

petal_width <= 1.65
samples = 33

value = [0, 38, 11]
class = versicolor

petal_width <= 1.7
samples = 31

value = [0, 10, 42]
class = virginica

samples = 33
value = [49, 0, 0]

class = setosa

sepal_length <= 6.25
samples = 64

value = [0, 48, 53]
class = virginica

petal_length <= 2.6
samples = 97

value = [49, 48, 53]
class = virginica
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Decision Tree # 4

samples = 1
value = [0, 0, 3]
class = virginica

samples = 32
value = [0, 52, 1]
class = versicolor

samples = 7
value = [0, 3, 4]
class = virginica

samples = 21
value = [0, 0, 37]
class = virginica

samples = 24
value = [35, 0, 0]

class = setosa

sepal_length <= 4.95
samples = 33

value = [0, 52, 4]
class = versicolor

petal_width <= 1.75
samples = 28

value = [0, 3, 41]
class = virginica

samples = 10
value = [0, 0, 15]
class = virginica

petal_length <= 2.35
samples = 57

value = [35, 52, 4]
class = versicolor

sepal_width <= 3.15
samples = 38

value = [0, 3, 56]
class = virginica

petal_length <= 4.85
samples = 95

value = [35, 55, 60]
class = virginica
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Decision Tree # 5

samples = 1
value = [0, 0, 1]
class = virginica

samples = 6
value = [0, 9, 0]

class = versicolor

samples = 3
value = [5, 0, 0]
class = setosa

samples = 28
value = [0, 40, 6]
class = versicolor

samples = 2
value = [0, 2, 3]
class = virginica

samples = 29
value = [0, 0, 45]
class = virginica

samples = 25
value = [39, 0, 0]

class = setosa

sepal_length <= 4.95
samples = 7

value = [0, 9, 1]
class = versicolor

petal_width <= 0.7
samples = 31

value = [5, 40, 6]
class = versicolor

petal_length <= 4.85
samples = 31

value = [0, 2, 48]
class = virginica

petal_length <= 2.45
samples = 32

value = [39, 9, 1]
class = setosa

petal_width <= 1.75
samples = 62

value = [5, 42, 54]
class = virginica

sepal_length <= 5.55
samples = 94

value = [44, 51, 55]
class = virginica
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Decision Tree # 6

samples = 3
value = [0, 2, 1]

class = versicolor

samples = 35
value = [0, 51, 1]
class = versicolor

samples = 2
value = [0, 1, 1]

class = versicolor

samples = 27
value = [0, 0, 46]
class = virginica

sepal_width <= 2.25
samples = 38

value = [0, 53, 2]
class = versicolor

petal_length <= 4.85
samples = 29

value = [0, 1, 47]
class = virginica

samples = 31
value = [47, 0, 0]

class = setosa

petal_width <= 1.75
samples = 67

value = [0, 54, 49]
class = versicolor

petal_length <= 2.45
samples = 98

value = [47, 54, 49]
class = versicolor
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Decision Tree # 7

samples = 5
value = [6, 0, 0]
class = setosa

samples = 30
value = [0, 47, 4]
class = versicolor

samples = 28
value = [46, 0, 0]

class = setosa

samples = 2
value = [0, 4, 0]

class = versicolor

petal_length <= 2.6
samples = 35

value = [6, 47, 4]
class = versicolor

samples = 27
value = [0, 0, 43]
class = virginica

petal_length <= 2.7
samples = 30

value = [46, 4, 0]
class = setosa

petal_width <= 1.7
samples = 62

value = [6, 47, 47]
class = versicolor

sepal_length <= 5.45
samples = 92

value = [52, 51, 47]
class = setosa
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Decision Tree # 8

samples = 2
value = [0, 0, 3]
class = virginica

samples = 1
value = [0, 1, 0]

class = versicolor

samples = 29
value = [46, 0, 0]

class = setosa

samples = 33
value = [0, 51, 0]
class = versicolor

sepal_length <= 6.5
samples = 3

value = [0, 1, 3]
class = virginica

samples = 28
value = [0, 0, 49]
class = virginica

petal_length <= 2.45
samples = 62

value = [46, 51, 0]
class = versicolor

petal_length <= 4.85
samples = 31

value = [0, 1, 52]
class = virginica

petal_length <= 4.75
samples = 93

value = [46, 52, 52]
class = versicolor
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Decision Tree # 9

samples = 37
value = [0, 49, 0]
class = versicolor

samples = 5
value = [0, 1, 5]
class = virginica

samples = 2
value = [0, 2, 5]
class = virginica

samples = 28
value = [0, 1, 41]
class = virginica

petal_length <= 4.9
samples = 42

value = [0, 50, 5]
class = versicolor

petal_width <= 1.75
samples = 30

value = [0, 3, 46]
class = virginica

samples = 29
value = [46, 0, 0]

class = setosa

petal_width <= 1.65
samples = 72

value = [0, 53, 51]
class = versicolor

petal_length <= 2.45
samples = 101

value = [46, 53, 51]
class = versicolor
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Feature Importance1

𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xj for an ensemble of M trees ϕm is:

Imp(Xj) =
1
M

M∑
m=1

∑
t∈ϕm

1(jt = j)
[
p(t)∆i(t)

]
,

where jt denotes the variable used at node t, p(t) = Nt/N and
∆i(t) is the impurity reduction at node t:

∆i(t) = i(t)− NtL
Nt
i(tL)−

Ntr
Nt
i(tR)

1Slide Courtesy Gilles Louppe
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Computed Feature Importance
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