Geometric Interpretation of Linear Regression

Nipun Batra
January 20, 2020
IIT Gandhinagar

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.
A linear combination of $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ is of the following form

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.
A linear combination of $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ is of the following form

$$
\alpha_{1} V_{1}+\alpha_{2} V_{2}+\alpha_{3} V_{3}+\cdots+\alpha_{i} v_{i}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{i} \in \mathbb{R}$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.
The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.
The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{i} v_{i} \quad \mid \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \in \mathbb{R}\right\}
$$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.
The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{i} v_{i} \quad \mid \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \in \mathbb{R}\right\}
$$

It is the set of all vectors that can be generated by linear combinations of $v_{1}, v_{2}, \ldots, v_{i}$.

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Example

$v_{3}=v_{1}+v_{2}$ and $v_{4}=v_{1}-v_{2}$
$\operatorname{Span}\left(\left(v_{1}, v_{2}\right)\right) \in \mathcal{R}^{2}$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) st. $\mathrm{x}=3 \mathrm{y}$?

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) st. $\mathrm{x}=3 \mathrm{y}$? No

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) s.t. $\mathrm{x}=3 \mathrm{y}$?
No
Span of the above set is along the line $y=2 x$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

Example

Example

The span is the plane $z=x$ or $x_{3}=x_{1}$

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised
- Consider the two columns of X. Can we write $X \theta$ as the span of $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$?

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised
- Consider the two columns of X. Can we write $X \theta$ as the

- We wish to find \hat{y} such that

$$
\begin{aligned}
& \underset{\arg \min }{ } \quad\|y-\hat{y}\|_{2} \\
& \hat{y} \in \operatorname{SPAN}\left\{\overline{x_{1}}, \overline{\bar{x}_{2}}, \ldots, \overline{x_{0}}\right\}
\end{aligned}
$$

Span of $\left.\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

Geometric Interpretation

Span of $\left.\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

The span is the plane $z=x$ or $x_{3}=x_{1}$

Geometric Interpretation

- We seek a \hat{y} in the span of the columns of X such that it is closest to y

Geometric Interpretation

- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{\top}(y-\hat{y})=0$

Geometric Interpretation

- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{\top}(y-\hat{y})=0$
- $X^{\top}(y-X \theta)=0$

Geometric Interpretation

- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{\top}(y-\hat{y})=0$
- $X^{\top}(y-X \theta)=0$
- $X^{\top} y=X^{\top} X \theta$ or $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} Y$

