Linear Regression II

Nipun Batra and the teaching staff
January 20, 2020
IIT Gandhinagar

Relation between \#instances and \# Variables

If $N<M$, then it is an under-determined system

Relation between \#instances and \# Variables

If $\mathrm{N}<\mathrm{M}$, then it is an under-determined system Example: $\mathrm{N}=2 ; \mathrm{M}=3$

Relation between \#instances and \# Variables

If $N<M$, then it is an under-determined system Example: $\mathrm{N}=2 ; \mathrm{M}=3$

$$
\left[\begin{array}{l}
30 \\
40
\end{array}\right]=\left[\begin{array}{lll}
1 & 6 & 30 \\
1 & 5 & 20
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

Relation between \#instances and \# Variables

If $\mathrm{N}<\mathrm{M}$, then it is an under-determined system
Example: $\mathrm{N}=2$; $\mathrm{M}=3$

$$
\begin{align*}
{\left[\begin{array}{l}
30 \\
40
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 6 & 30 \\
1 & 5 & 20
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right] \\
30 & =\theta_{0}+6 \theta_{1}+30 \theta_{2} \\
40 & =\theta_{0}+5 \theta_{1}+20 \theta_{2} \tag{1}\\
-10 & =-1 \theta_{1}-10 \theta_{2}
\end{align*}
$$

The above equation can have infinitely many solutions.
Under-determined system: $\epsilon_{i}=0$ for all i

Relation between \#instances and \# Variables

What if $\mathrm{N}>\mathrm{M}$

Relation between \#instances and \# Variables

What if $\mathrm{N}>\mathrm{M}$
Then it is an over determined system. So, the sum of squared residuals >0.

Variable Transformation

Transform the data, by including the higher power terms in the feature space.

t	s
0	0
1	6
3	24
4	36

The above table represents the data before transformation

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s}=f\left(t, t^{2}\right)$

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation
Now, we can write $\hat{s}=f\left(t, t^{2}\right)$
Other transformations: $\log (x), x_{1} \times x_{2}$

A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
[^0]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
[^1]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
[^2]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+e^{\theta_{2}} * t$ linear?
[^3]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+e^{\theta_{2}} * t$ linear?
5. All except \#4 are linear models!
[^4]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+e^{\theta_{2}} * t$ linear?
5. All except \#4 are linear models!
6. Linear refers to the relationship between the parameters that you are estimating (θ) and the outcome
[^5]
Class Exercise

Solve the linear system below using normal equation method

x_{1}	x_{2}	y
1	2	4
2	4	6
3	6	8

Multi-collinearity

There can be situations where $X^{\top} X$ is not computable.

Multi-collinearity

There can be situations where $X^{\top} X$ is not computable. This condition arises when the $\left|X^{\top} X\right|=0$.

$$
x=\left[\begin{array}{lll}
1 & 1 & 2 \tag{2}\\
1 & 2 & 4 \\
1 & 3 & 6
\end{array}\right]
$$

Multi-collinearity

There can be situations where $X^{\top} X$ is not computable. This condition arises when the $\left|X^{\top} X\right|=0$.

$$
x=\left[\begin{array}{lll}
1 & 1 & 2 \tag{2}\\
1 & 2 & 4 \\
1 & 3 & 6
\end{array}\right]
$$

The matrix X is not full rank.

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables
- Use different subsets of data

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables
- Use different subsets of data
- Avoid dummy variable trap

Say Pollution in Delhi $=P$

Dummy variables

Say Pollution in Delhi $=P$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1}{ }^{*}$ Wind speed $+\theta_{3}$ * Wind Direction

Dummy variables

Say Pollution in Delhi $=P$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1} *$ Wind speed $+\theta_{3} *$ Wind Direction

But, wind direction is a categorical variable.

Dummy variables

Say Pollution in Delhi $=P$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1}{ }^{*}$ Wind speed $+\theta_{3}$ * Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Dummy variables

Say Pollution in Delhi $=P$

$$
\mathrm{P}=\theta_{0}+\theta_{1}{ }^{\star} \# \text { Vehicles }+\theta_{1} * \text { Wind speed }+\theta_{3} * \text { Wind Direction }
$$

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Can we use the direct encoding?

Dummy variables

Say Pollution in Delhi $=P$

$$
\mathrm{P}=\theta_{0}+\theta_{1}{ }^{\star} \# \text { Vehicles }+\theta_{1} * \text { Wind speed }+\theta_{3} * \text { Wind Direction }
$$

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Can we use the direct encoding?
Then this implies that $S>W>E>N$

N-1 Variable encoding

	Is it N?	Is it E?	Is it W?
N	1	0	0
E	0	1	0
W	0	0	1
S	0	0	0

Dummy Variables

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
N	1	0	0	0
E	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding?

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding? The N - 1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding? The N - 1 variable encoding is better because the N variable encoding can cause multi-collinearity. Is it $\mathrm{S}=1$ - (Is it $\mathrm{N}+$ Is it $\mathrm{W}+$ Is it E)

N	00
E	01
W	10
S	11

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.
This introduces dependencies between them, and this can confusion in classifiers.

Interpreting Dummy variables

Gender	height
F	\ldots
F	\ldots
F	\ldots
M	\ldots
M	\ldots

Interpreting Dummy variables

Gender	height
F	\ldots
F	\ldots
F	\ldots
M	\ldots
M	\ldots

Encoding

Interpreting Dummy variables

Gender	height
F	\ldots
F	\ldots
F	\ldots
M	\ldots
M	\ldots

Encoding

Is Female	height
1	\ldots
1	\ldots
1	\ldots
0	\ldots
0	\ldots

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
θ_{1} is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1}$ * (Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
θ_{1} is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_{1}=$ Avg. female height $(5+5.2+5.4) / 3-$ Avg. male height(5.9)

Alternative parameter estimation

$$
\hat{y}_{i}=\theta_{0}+\theta_{1} x_{i}
$$

Alternative parameter estimation

$$
\hat{y}_{i}=\theta_{0}+\theta_{1} x_{i}
$$

$$
\epsilon_{i}=y_{i}-\hat{y}_{i}
$$

Alternative parameter estimation

$$
\begin{gathered}
\hat{y}_{i}=\theta_{0}+\theta_{1} x_{i} \\
\epsilon_{i}=y_{i}-\hat{y}_{i} \\
\sum \epsilon_{i}^{2}=\sum\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}
\end{gathered}
$$

Alternative parameter estimation

$$
\begin{gathered}
\hat{y}_{i}=\theta_{0}+\theta_{1} x_{i} \\
\epsilon_{i}=y_{i}-\hat{y}_{i} \\
\sum \epsilon_{i}^{2}=\sum\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}
\end{gathered}
$$

Now, we compute the derivative of it with all the θ_{j}. Let us solve for x being a scalar.

Alternative parameter estimation

$$
\begin{align*}
\frac{\partial}{\partial \theta_{0}} \sum \epsilon_{i}^{2} & =2 \sum\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)(-1)=0 \\
0 & =\sum y_{i}-N \theta_{0}-\sum \theta_{1} x_{i} \tag{3}\\
\theta_{0} & =\frac{\sum y_{i}-\theta_{1} \sum x_{i}}{N}
\end{align*}
$$

$$
\theta_{0}=\bar{y}-\theta_{1} \bar{x}
$$

Alternative parameter estimation

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{1}} \sum \epsilon_{i}^{2}=0 \\
\Longrightarrow 2 \sum_{i=1}^{N}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)\left(-x_{i}\right)=0 \\
\Longrightarrow \sum_{i=1}^{N}\left(x_{i} y_{i}-\theta_{0} x_{i}-\theta_{1} x_{i}^{2}\right)=0 \\
\Longrightarrow \sum \theta_{1} x_{i}^{2}=\sum x_{i} y_{i}-\sum \theta_{0} x_{i} \\
\Longrightarrow \sum \theta_{1} x_{i}^{2}=\sum x_{i} y_{i}-\sum\left(\bar{y}-\theta_{1} \bar{x}\right) x_{i}
\end{gathered}
$$

Alternative parameter estimation

$$
\begin{gathered}
\Longrightarrow \sum \theta_{1} x_{i}^{2}=\sum x_{i} y_{i}-\bar{y} \sum x_{i}+\theta_{1} \bar{x} \sum x_{i} \\
\Longrightarrow \sum x_{i} y_{i}-\sum x_{i} y=\theta_{1}\left(-\bar{x} \sum x_{i}+\sum x_{i}^{2}\right) \\
\theta_{1}=\frac{x_{i} y_{i}-\sum x_{i} y}{\sum x_{i}^{2}-\bar{x} \sum x_{i}}
\end{gathered}
$$

Alternative parameter estimation

$$
\theta_{1}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\frac{1}{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
\theta_{1}=\frac{\operatorname{Cov}(x, y)}{\operatorname{variance}(x)}
$$

[^0]: 1https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^1]: 1https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^2]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^3]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^4]: ${ }^{1} h t t p s: / / s t a t s . s t a c k e x c h a n g e . c o m / q u e s t i o n s / 8689 /$ what-does-linear-stand-for-in-linear-regression

[^5]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

