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Relation between #instances and # Variables

If N< M, then it is an under-determined system

Example: N=2; M=3

[
30
40

]
=

[
1 6 30
1 5 20

]θ0θ1
θ2



30 = θ0 + 6θ1 + 30θ2
40 = θ0 + 5θ1 + 20θ2

−10 = −1θ1 − 10θ2

(1)

The above equation can have infinitely many solutions.
Under-determined system: εi = 0 for all i
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Relation between #instances and # Variables

What if N > M

Then it is an over determined system. So, the sum of squared
residuals > 0.
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Variable Transformation

Transform the data, by including the higher power terms in the
feature space.

t s

0 0
1 6
3 24
4 36

The above table represents the data before transformation
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Variable Transformation

Add the higher degree features to the previous table

t t2 s

0 0 0
1 1 6
3 9 24
4 16 36

The above table represents the data after transformation
Now, we can write ŝ = f (t, t2)
Other transformations: log(x), x1 × x2
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A big caveat: Linear in what?!1

1. ŝ = θ0 + θ1 ∗ t is linear

2. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 linear?
3. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 + θ3 ∗ cos(t3) linear?
4. Is ŝ = θ0 + θ1 ∗ t + eθ2 ∗ t linear?
5. All except #4 are linear models!
6. Linear refers to the relationship between the parameters
that you are estimating (θ) and the outcome

1https://stats.stackexchange.com/questions/8689/
what-does-linear-stand-for-in-linear-regression
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3. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 + θ3 ∗ cos(t3) linear?
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3. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 + θ3 ∗ cos(t3) linear?
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Class Exercise

Solve the linear system below using normal equation method

x1 x2 y

1 2 4
2 4 6
3 6 8

6



Multi-collinearity

There can be situations where XTX is not computable.

This condition arises when the |XTX| = 0.

X =

1 1 2
1 2 4
1 3 6

 (2)

The matrix X is not full rank.
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Multi-collinearity

It arises when one or more predictor varibale/feature in X can
be expressed as a linear combinations of others

How to tackle it?

• Regularize

• Drop variables
• Use different subsets of data
• Avoid dummy variable trap
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Dummy variables

Say Pollution in Delhi = P

P = θ0 + θ1*#Vehicles + θ1* Wind speed + θ3 * Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?
Then this implies that S>W>E>N
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Dummy Variables

N-1 Variable encoding

Is it N? Is it E? Is it W?
N 1 0 0
E 0 1 0
W 0 0 1
S 0 0 0
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Dummy Variables

N Variable encoding

Is it N? Is it E? Is it W? Is it S?
N 1 0 0 0
E 0 1 0 0
W 0 0 1 0
S 0 0 0 1
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Dummy Variables

Which is better N variable encoding or N-1 variable encoding?

The N-1 variable encoding is better because the N variable
encoding can cause multi-collinearity.
Is it S = 1 - (Is it N + Is it W + Is it E)
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Binary Encoding

N 00
E 01
W 10
S 11

W and S are related by one bit.

This introduces dependencies between them, and this can
confusion in classifiers.
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Interpreting Dummy variables

Gender height
F …
F …
F …
M …
M …

Encoding

Is Female height
1 …
1 …
1 …
0 …
0 …
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Interpreting Dummy Variables

Is Female height
1 5
1 5.2
1 5.4
0 5.8
0 6

heighti = θ0 + θ1 * (Is Female) + εi

We get θ0 = 5.8 and θ0 = 6
θ0 = Avg height of Male = 5.9
θ0 + θ1 is chosen based (equal to) on 5, 5.2, 5.4 (for three
records).
θ1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 θ1 = Avg. female
height (5+5.2+5.4)/3 - Avg. male height(5.9)
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Alternative parameter estimation

ŷi = θ0 + θ1xi

εi = yi − ŷi

∑
ε2i =

∑
(yi − θ0 − θ1xi)2

Now, we compute the derivative of it with all the θj. Let us
solve for x being a scalar.
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Alternative parameter estimation

∂

∂θ0

∑
ε2i = 2

∑
(yi − θ0 − θ1xi)(−1) = 0

0 =
∑

yi − Nθ0 −
∑

θ1xi

θ0 =

∑
yi − θ1

∑
xi

N

(3)

θ0 = ȳ − θ1x̄
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Alternative parameter estimation

∂

∂θ1

∑
ε2i = 0

=⇒ 2
N∑
i=1

(yi − θ0 − θ1xi)(−xi) = 0

=⇒
N∑
i=1

(xiyi − θ0xi − θ1x2i ) = 0

=⇒
∑

θ1x2i =
∑

xiyi −
∑

θ0xi

=⇒
∑

θ1x2i =
∑

xiyi −
∑

(ȳ − θ1x̄)xi
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Alternative parameter estimation

=⇒
∑

θ1x2i =
∑

xiyi − ȳ
∑

xi + θ1x̄
∑

xi

=⇒
∑

xiyi −
∑

xiy = θ1(−x̄
∑

xi +
∑

x2i )

θ1 =
xiyi −

∑
xiy∑

x2i − x̄
∑
xi

19



Alternative parameter estimation

θ1 =
1
N
∑N

i=1(xi − x̄)(yi − ȳ)
1
N(xi − x̄)2

θ1 =
Cov(x, y)
variance(x)
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