Linear Regression

Nipun Batra and the teaching staff
January 16, 2020
IIT Gandhinagar

- O / P is continuous in nature.

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:
- $F=m a$

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:
- $F=m a$
- $v=u+a t$

Task at hand

- TASK: Predict Weight = f(height)

Height	Weight
3	29
4	35
5	39
2	20
6	41
7	$?$
8	$?$
1	$?$

The first part of the dataset are the training points. The latter ones are testing points.

Scatter Plot

Matrix representation of the expression

- weight $t_{1} \approx \theta_{0}+\theta_{1} *$ height $_{1}$
- weight ${ }_{2} \approx \theta_{0}+\theta_{1} *$ height $_{2}$
- weight $_{N} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{N}$

Matrix representation of the expression

- weight $t_{1} \approx \theta_{0}+\theta_{1} *$ height $_{1}$
- weight ${ }_{2} \approx \theta_{0}+\theta_{1} *$ height $_{2}$
- weight $_{N} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{N}$
weight $_{i} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{i}$

Matrix representation of the expression

$$
\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\cdots & \cdots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=x_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=X_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

- θ_{0} - Bias Term/Intercept Term

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=X_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

- θ_{0} - Bias Term/Intercept Term
- θ_{1}-Slope

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.

Extension to multiple dimensions

In the previous example $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where x is one-dimensional. Examples in multiple dimensions.

Extension to multiple dimensions

In the previous example $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN
campus

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN
campus
Demand = f(\# occupants, Temperature)

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN
campus

> Demand = f(\# occupants, Temperature)

Demand $=$ Base Demand $+K_{1} * \#$ occupants $+K_{2}$ * Temperature

Intuition

We hope to:

- Learn f : Demand = f (\#occupants, Temperature)
- From training dataset
- To predict the condition for the testing set

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime \top} \theta$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime \top} \theta$
- where $\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime T} \theta$
- where $\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$
- and $x_{i}^{\prime}=\left[\begin{array}{c}1 \\ \text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]=\left[\begin{array}{c}1 \\ x_{i}\end{array}\right]$

Linear Relationship

We have
. $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$

- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime T} \theta$
- where $\theta=\left[\begin{array}{c}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$
- and $x_{i}^{\prime}=\left[\begin{array}{c}1 \\ \text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]=\left[\begin{array}{c}1 \\ x_{i}\end{array}\right]$
- Notice the transpose in the equation! This is because x_{i} is a column vector

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive
- Demand increases, if temperature increases, then θ_{1} is likely to be positive

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive
- Demand increases, if temperature increases, then θ_{1} is likely to be positive
- Base demand is independent of the temperature and the \# occupants, but, likely positive, thus θ_{0} is likely positive.

Generalized Linear Regression Format

- Assuming N samples for training

Generalized Linear Regression Format

- Assuming N samples for training
- \# Features = M

Generalized Linear Regression Format

- Assuming N samples for training
- \# Features = M

Generalized Linear Regression Format

- Assuming N samples for training
- \# Features = M

$$
\left[\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}} \\
\vdots \\
\hat{y_{N}}
\end{array}\right]_{N \times 1}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, M} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, M} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, M}
\end{array}\right]_{N \times(M+1)}\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{M}
\end{array}\right]_{(M+1) \times 1}
$$

Generalized Linear Regression Format

- Assuming N samples for training
- \# Features = M

$$
\left[\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}} \\
\vdots \\
\hat{y_{N}}
\end{array}\right]_{N \times 1}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, M} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, M} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, M}
\end{array}\right]_{N \times(M+1)}\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{M}
\end{array}\right]_{(M+1) \times 1}
$$

$$
\hat{Y}=X \theta
$$

Relationships between feature and target variables

- There could be different $\theta_{0}, \theta_{1} \ldots \theta_{M}$. Each of them can represents a relationship.
- Given multiples values of $\theta_{0}, \theta_{1} \ldots \theta_{M}$ how to choose which is the best?
- Let us consider an example in 2d

Relationships between feature and target variables

Out of the three fits, which one do we choose?

Relationships between feature and target variables

We have $\hat{y}=2+1 x$ as one relationship.

Relationships between feature and target variables

How far is our estimated \hat{y} from ground truth y ?

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y_{i}}=x_{i}^{\prime \top} \theta$
- ϵ_{i} denotes the error/residual for $i^{\text {th }}$ sample

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y_{i}}=x_{i}^{\prime \top} \theta$
- ϵ_{i} denotes the error/residual for $i^{\text {th }}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y_{i}}=x_{i}^{\prime \top} \theta$
- ϵ_{i} denotes the error/residual for $i^{\text {th }}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression
- $\epsilon_{i}=y_{i}-\hat{y}_{i}$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{t h}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y_{i}}=x_{i}^{\prime \top} \theta$
- ϵ_{i} denotes the error/residual for $i^{\text {th }}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression
- $\epsilon_{i}=y_{i}-\hat{y}_{i}$
- $\epsilon_{i}=y_{i}-\left(\theta_{0}+x_{i} \times \theta_{1}\right)$
- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.

Good fit

- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.
- minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}-L_{2}$ Norm

Good fit

- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.
- minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}-L_{2}$ Norm
- minimize $\left|\epsilon_{1}\right|+\left|\epsilon_{1}\right|+\cdots+\left|\epsilon_{1}\right|-L_{1}$ Norm

Normal Equation

Normal Equation

$$
Y=X \theta+\epsilon
$$

Normal Equation

$$
Y=X \theta+\epsilon
$$

To Learn: θ

Normal Equation

$$
Y=X \theta+\epsilon
$$

To Learn: θ
Objective: minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}$

Normal Equation

$$
\epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{N}
\end{array}\right]
$$

Normal Equation

$$
\epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{N}
\end{array}\right]
$$

Objective: Minimize $\epsilon^{\top} \epsilon$

Derivation of Normal Equation

$$
\begin{aligned}
\epsilon & =y-X \theta \\
\epsilon^{T} & =(y-X \theta)^{T}=y^{\top}-\theta^{\top} x^{\top} \\
\epsilon^{\top} \epsilon & =\left(y^{\top}-\theta^{\top} x^{\top}\right)(y-x \theta) \\
& =y^{\top} y-\theta^{\top} x^{\top} y-y^{\top} x \theta+\theta^{\top} x^{\top} x \theta \\
& =y^{\top} y-2 y^{\top} x \theta+\theta^{\top} x^{\top} x \theta
\end{aligned}
$$

This is what we wish to minimize

Minimizing the objective function

$$
\begin{equation*}
\frac{\partial \epsilon^{\top} \epsilon}{\partial \theta}=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} y^{\top} y=0 \\
& \frac{\partial}{\partial \theta}\left(-2 y^{\top} x \theta\right)=\left(-2 y^{\top} x\right)^{\top}=-2 x^{\top} y \\
& \cdot \frac{\partial}{\partial \theta}\left(\theta^{\top} x^{\top} x \theta\right)=2 x^{\top} x \theta
\end{aligned}
$$

Substitute the values in the top equation

Normal Equation derivation

$$
\begin{gathered}
0=-2 x^{\top} y+2 x^{\top} x \theta \\
x^{\top} y=x^{\top} x \theta
\end{gathered}
$$

$$
\hat{\theta}_{O L S}=\left(X^{\top} X\right)^{-1} x^{\top} y
$$

Worked out example

x	y
0	0
1	1
2	2
3	3

Given the data above, find θ_{0} and θ_{1}.

Scatter Plot

Worked out example

$$
\begin{align*}
& X=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \\
& X^{\top}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right] \tag{2}\\
& X^{\top} X=\left[\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right]
\end{align*}
$$

Given the data above, find θ_{0} and θ_{1}.

$$
\begin{align*}
\left(X^{\top} X\right)^{-1} & =\frac{1}{20}\left[\begin{array}{cc}
14 & -6 \\
-6 & 4
\end{array}\right] \\
x^{\top} y & =\left[\begin{array}{lll}
1 & 1 & 1 \\
1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
14
\end{array}\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
\theta & =\left(X^{\top} X\right)^{-1}\left(X^{\top} y\right) \\
{\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right] } & =\frac{1}{20}\left[\begin{array}{cc}
14 & -6 \\
-6 & 4
\end{array}\right]\left[\begin{array}{c}
6 \\
14
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \tag{4}
\end{align*}
$$

Scatter Plot

Effect of outlier

x	y
1	1
2	2
3	3
4	0

Compute the θ_{0} and θ_{1}.

Scatter Plot

Worked out example

$$
\begin{aligned}
X & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right] \\
X^{\top} & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right] \\
X^{\top} X & =\left[\begin{array}{ll}
4 & 10 \\
10 & 30
\end{array}\right]
\end{aligned}
$$

Given the data above, find θ_{0} and θ_{1}.

$$
\begin{align*}
\left(X^{\top} X\right)^{-1} & =\frac{1}{20}\left[\begin{array}{cc}
30 & -10 \\
-10 & 4
\end{array}\right] \tag{6}\\
x^{\top} y & =\left[\begin{array}{c}
6 \\
14
\end{array}\right]
\end{align*}
$$

$$
\begin{align*}
\theta & =\left(X^{\top} X\right)^{-1}\left(X^{\top} y\right) \\
{\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right] } & =\left[\begin{array}{c}
2 \\
(-1 / 5)
\end{array}\right] \tag{7}
\end{align*}
$$

Scatter Plot

Fit $(\hat{y}=2-x / 5)$

