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Linear Regression

• O/P is continuous in nature.

• Examples of linear systems:

• F = ma
• v = u+ at
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Task at hand

• TASK: Predict Weight = f(height)

Height Weight
3 29
4 35
5 39
2 20
6 41
7 ?
8 ?
1 ?

The first part of the dataset are the training points. The latter
ones are testing points.
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Matrix representation of the expression

• weight1 ≈ θ0+θ1*height1
• weight2 ≈ θ0+θ1*height2
• weightN ≈ θ0+θ1*heightN

weighti ≈ θ0+θ1*heighti
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Matrix representation of the expression


weight1
weight2

. . .

weightN

 =


1 height1
1 height2
. . . . . .

1 heightN


[
θ0

θ1

]

WN×1 = XN×2θ2×1

• θ0 - Bias Term/Intercept Term
• θ1 - Slope
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Extension to multiple dimensions

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.
One example is to predict the water demand of the IITGN
campus

Demand = f(# occupants, Temperature)

Demand = Base Demand + K1 * # occupants + K2 * Temperature
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Intuition

We hope to:

• Learn f : Demand = f (#occupants, Temperature)
• From training dataset
• To predict the condition for the testing set
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Linear Relationship

We have

• xi =
[
Temperaturei
#Occupantsi

]

• Estimated demand for ith sample is
ˆdemandi = θ0 + θ1Temperaturei + θ2Occupantsi

• ˆdemandi = x′Ti θ

• where θ =

θ0θ1
θ2


• and x′i =

 1
Temperaturei
#Occupantsi

 =

[
1
xi

]
• Notice the transpose in the equation! This is because xi is
a column vector
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We can expect the following

• Demand increases, if # occupants increases, then θ2 is
likely to be positive

• Demand increases, if temperature increases, then θ1 is
likely to be positive

• Base demand is independent of the temperature and the
# occupants, but, likely positive, thus θ0 is likely positive.
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Generalized Linear Regression Format

• Assuming N samples for training

• # Features = M


ŷ1
ŷ2
...
ŷN


N×1

=


1 x1,1 x1,2 . . . x1,M
1 x2,1 x2,2 . . . x2,M
...

...
... . . .

...
1 xN,1 xN,2 . . . xN,M


N×(M+1)


θ0

θ1
...
θM


(M+1)×1

Ŷ = Xθ
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ŷN


N×1

=


1 x1,1 x1,2 . . . x1,M
1 x2,1 x2,2 . . . x2,M
...

...
... . . .

...
1 xN,1 xN,2 . . . xN,M


N×(M+1)


θ0

θ1
...
θM


(M+1)×1
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Relationships between feature and target variables

• There could be different θ0, θ1 . . . θM. Each of them can
represents a relationship.

• Given multiples values of θ0, θ1 . . . θM how to choose which
is the best?

• Let us consider an example in 2d
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Relationships between feature and target variables

Out of the three fits, which one do we choose?

0 2 4

0

5

x

y

ŷ = 0+ 1x
ŷ = 2+ 1x
ŷ = −2+ 2x
Train data
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Relationships between feature and target variables

We have ŷ = 2+ 1x as one relationship.

0 2 4

0

2

4

6

x

y

ŷ = 2+ 1x
Train Data
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Relationships between feature and target variables

How far is our estimated ŷ from ground truth y?

0 2 4

0

2

4

6

ε1

ε2

ε2

ε2

x

y

ŷ = 2+ 1x
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Error terms

• yi = ŷi + εi where εi ∼ N (0, σ2)

• yi denotes the ground truth for ith sample
• ŷi denotes the prediction for ith sample, where ŷi = x′Ti θ
• εi denotes the error/residual for ith sample
• θ0, θ1: The parameters of the linear regression
• εi = yi − ŷi
• εi = yi − (θ0 + xi × θ1)
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Good fit

• |ε1|, |ε2|, |ε3|, ... should be small.

• minimize ε21 + ε22 + · · ·+ ε2N - L2 Norm
• minimize |ε1|+ |ε1|+ · · ·+ |ε1| - L1 Norm
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Normal Equation

Y = Xθ + ε

To Learn: θ
Objective: minimize ε21 + ε22 + · · ·+ ε2N
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Normal Equation

ε =


ε1

ε1
...
εN



Objective: Minimize εTε
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Derivation of Normal Equation

ε = y − Xθ
εT = (y − Xθ)T = yT − θTXT

εTε = (yT − θTXT)(y − Xθ)
= yTy − θTXTy − yTXθ + θTXTXθ
= yTy − 2yTXθ + θTXTXθ

This is what we wish to minimize
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Minimizing the objective function

∂εTε

∂θ
= 0 (1)

•
∂

∂θ
yTy = 0

•
∂

∂θ
(−2yTXθ) = (−2yTX)T = −2XTy

•
∂

∂θ
(θTXTXθ) = 2XTXθ

Substitute the values in the top equation
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Normal Equation derivation

0 = −2XTy + 2XTXθ

XTy = XTXθ

θ̂OLS = (XTX)−1XTy
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Worked out example

x y

0 0
1 1
2 2
3 3

Given the data above, find θ0 and θ1.
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Scatter Plot
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Worked out example

X =


1 0
1 1
1 2
1 3


XT =

[
1 1 1 1
0 1 2 3

]

XTX =

[
4 6
6 14

]
(2)

Given the data above, find θ0 and θ1.
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Worked out example

(XTX)−1 = 1
20

[
14 −6
−6 4

]

XTy =
[
1 1 1 1
0 1 2 3

]
0
1
2
3

 =

[
6
14

] (3)
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Worked out example

θ = (XTX)−1(XTy)[
θ0

θ1

]
=

1
20

[
14 −6
−6 4

][
6
14

]
=

[
0
1

]
(4)
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Scatter Plot
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Fit (ŷ = x)

27



Effect of outlier

x y

1 1
2 2
3 3
4 0

Compute the θ0 and θ1.
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Scatter Plot
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Worked out example

X =


1 1
1 2
1 3
1 4


XT =

[
1 1 1 1
1 2 3 4

]

XTX =

[
4 10
10 30

]
(5)

Given the data above, find θ0 and θ1.
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Worked out example

(XTX)−1 = 1
20

[
30 −10
−10 4

]

XTy =
[
6
14

] (6)
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Worked out example

θ = (XTX)−1(XTy)[
θ0

θ1

]
=

[
2

(−1/5)

]
(7)
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Scatter Plot
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Fit (ŷ = 2− x/5)
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