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Linear Regression

- O/P is continuous in nature.
- Examples of linear systems:
- F=ma
-v=u+at



Task at hand

- TASK: Predict Weight = f(height)

Height | Weight
3 29
4 35
5 39
2 20
6 41
7 ?
8 ?
1 ?

The first part of the dataset are the training points. The latter
ones are testing points.
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[ weight; =~ 6p+61*height; ]
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Matrix representation of the expression

weight, 1 heighty

weight; | | 1 heighty | |6
U R P . 01

weighty 1 heighty

W1 = Xnx202x1

- §p - Bias Term/Intercept Term
- 07 - Slope
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Extension to multiple dimensions

In the previous example y = f(x), where x is one-dimensional.
Examples in multiple dimensions.

One example is to predict the water demand of the IITGN
campus

Demand = f(# occupants, Temperature)

Demand = Base Demand + K; * # occupants + K, * Temperature




We hope to:

- Learn f: Demand = f(#occupants, Temperature)
- From training dataset

- To predict the condition for the testing set
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Linear Relationship

We have

#0ccupants;
- Estimated demand for i sample is
demAand, = 0y + 6:Temperature; + 6,0ccupants;
- demand; = x"6
to
- where 0 = | 6,
6>

; [Temperature,»]
I' p—

1
, 1
- and x; = | Temperature; | =
Xi
#0ccupants;
- Notice the transpose in the equation! This is because x; is
a column vector
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We can expect the following

- Demand increases, if # occupants increases, then 6, is
likely to be positive

- Demand increases, if temperature increases, then 6, is
likely to be positive

- Base demand is independent of the temperature and the
# occupants, but, likely positive, thus 6 is likely positive.



Generalized Linear Regression Format

- Assuming N samples for training

10



Generalized Linear Regression Format

- Assuming N samples for training

- # Features = M

10



Generalized Linear Regression Format

- Assuming N samples for training

- # Features = M

10



Generalized Linear Regression Format

- Assuming N samples for training

- # Features = M

Vi T X0 X2 ... XM o
V2 T X0 X2 ... Xom 01

YN nxr T Xng Xna o oo Xum N (M+1) Ou (M+1)x1

10



Generalized Linear Regression Format

- Assuming N samples for training

- # Features = M

Vi T X0 X2 ... XM o
Vo T X0 X2 ... Xom 01
YN nxr T Xng Xna o oo Xum N (M+1) Ou (M+1)x1
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Relationships between feature and target variables

- There could be different 0y, 0, ...60y. Each of them can
represents a relationship.

- Given multiples values of #p, 64 ...6y how to choose which
is the best?

- Let us consider an example in 2d

n



Relationships between feature and target variables

Out of the three fits, which one do we choose?

— J=0+1x

¥y =2+1x
—§J=-2+2
e Train data
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Relationships between feature and target variables

We have § = 2 + 1x as one relationship.

J=2+1x
6| e Train Data
4 -

>
[ J
2 )
o

0 °

13



Relationships between feature and target variables

How far is our estimated y from ground truth y?

y=2+1x

14



Error terms

. y, = )71 + €j Whel’e & & N(O7U2)

15



Error terms

. y, = )71 + €j Whel’e & & N(O7U2)

- y; denotes the ground truth for it sample

15



Error terms

Vi = )7,‘ + € where €j ~ N(O,Uz)
- y; denotes the ground truth for it sample

-y denotes the prediction for it sample, where y; = x/7¢

15



Error terms

Vi = )7,‘ + € where €j ~ N(O,Uz)
- y; denotes the ground truth for it sample
-y denotes the prediction for it sample, where y; = x/7¢

- ¢; denotes the error/residual for i sample

15



Error terms

- y;i = Vi + ¢ where ¢ ~ N(0,0?)

- y; denotes the ground truth for it sample

-y denotes the prediction for it sample, where y; = x/7¢
- ¢; denotes the error/residual for i sample

* 0o, 01: The parameters of the linear regression

15



Error terms

- y;i = Vi + ¢ where ¢ ~ N(0,0?)

- y; denotes the ground truth for it sample

-y denotes the prediction for it sample, where y; = x/7¢
- ¢; denotes the error/residual for i sample

* 0o, 01: The parameters of the linear regression
ce=Yi— i

15



Error terms

- y;i = Vi + ¢ where ¢ ~ N(0,0?)

- y; denotes the ground truth for it sample

-y denotes the prediction for it sample, where y; = x/7¢
- ¢; denotes the error/residual for i sample

* 0o, 01: The parameters of the linear regression
ce=Yi—Yi

& =Y — (00 + X x 61)

15
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... should be small.

- e, le2l, |esl,

- minimize € 4+ € + - + €% - L, Norm

- minimize |ei| + |er| + - - + |ea| - L1 Norm
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Normal Equation

Y =X0 + ¢

To Learn: 6
Objective: minimize € + € + - + €
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Normal Equation

€1

€1

N

Objective: Minimize €'e



Derivation of Normal Equation

e=y—X0
€= —Xx0)" =y" —0'x"
ele=(y" —0"XT)(y — X0)
—yTy —0'XTy —y"X0 + 07X X0
=yly —2y"X0 + 67X X0

This is what we wish to minimize

19



Minimizing the objective function

0 T—o
%yy—

)
T og(mX0) = (=2y'X)" = —2ATy

%)
. %(HTXTXG) = 2X"X0

Substitute the values in the top equation

20



Normal Equation derivation

0=—2XTy+2x"x0

Xy = X"X0

[ Oors = (XTX)"XTy ]

21



Worked out example

w N - O
w N P Ol <

Given the data above, find 8y and ;.
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Worked out example

10
P
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XTX =
6 14

Given the data above, find 8y and ;.
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Worked out example

w N - O

25



Worked out example

6=(X"X)""(X"y)

AR [ R

26



Scatter Plot
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Effect of outlier

&~ W N
O W N R

Compute the 6y and 6.
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Worked out example

11
|12

13

1 4

r (5)
o[t

12 3 4

4 10
XX =

10 30

Given the data above, find 8y and ;.
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Worked out example
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Worked out example

6=("X)""(X"y)

bo| | 2 (7)
61| |(=1/5)
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Scatter Plot
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