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Idea: Use Linear Regression
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P(X = Orange|Radius) = θ0 + θ1 × Radius

Generally,
P(y = 1|x) = Xθ
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Idea: Use Linear Regression

Prediction:
If θ0 + θ1 × Radius > 0.5→ Orange

Else→ Tomato
Problem:
Range of Xθ is (−∞,∞)

But P(y = 1| . . .) ∈ [0, 1]
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Idea: Use Linear Regression
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Ideal boundary
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• Have a decision function similar to the above (but not so
sharp and discontinuous)

• Aim: use linear regression still!
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Idea: Use Linear Regression
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Question. Can we still use Linear Regression?
Answer. Yes! Transform ŷ → [0, 1]
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Logistic / Sigmoid Function

ŷ ∈ (−∞,∞)

φ = Sigmoid / Logistic Function (σ)

φ(ŷ) ∈ [0, 1]
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Logistic / Sigmoid Function

z → ∞

σ(z) → 1
z → −∞
σ(z) → 0
z = 0
σ(z) = 0.5
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Logistic / Sigmoid Function

Question. Could you use some other transformation (φ) of ŷ s.t.

φ(ŷ) ∈ [0, 1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

P(y = 1|X) = σ(Xθ) = 1
1+ e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X),
P(y = 0|X))
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Logistic / Sigmoid Function

P(y = 1|X) = σ(Xθ) = 1
1+ e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X),
P(y = 0|X))

P(y = 0|X) = 1− P(y = 1|X) = 1− 1
1+ e−Xθ

=
e−Xθ

1+ e−Xθ

∴
P(y = 1|X)

1− P(y = 1|X)
= eXθ =⇒ Xθ = log

P(y = 1|X)
1− P(y = 1|X)
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Odds (Used in betting)

P(win)
P(loss)

Here,

Odds = P(y = 1)
P(y = 0)

log-odds = log P(y=1)
P(y=0) = Xθ
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

or 1
1+e−Xθ = e−Xθ

1+e−Xθ

or eXθ = 1

or Xθ = 0
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Learning Parameters

Could we use cost function as:

J(θ) =
∑

(yi − ŷi)2

ŷi = σ(Xθ)

Answer: No (Non-Convex)
(See Jupyter Notebook)

17



Cost function convexity
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Learning Parameters

Likelihood = P(D|θ)

P(y|X, θ) =
∏n
i=1 P(yi|xi, θ)

where y = 0 or 1
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Learning Parameters

Likelihood = P(D|θ)

P(y|X, θ) =
n∏
i=1

P(yi|xi, θ)

=
n∏
i=1

{ 1
1+ e−xTi θ

}yi{
1− 1

1+ e−xTi θ
}1−yi

[Above: Similar to P(D|θ) for Linear Regression;

Difference Bernoulli instead of Gaussian]

− log P(y|X, θ) = Negative Log Likelihood
= Cost function will be minimising
= J(θ) 20



Aside on Bernoulli Likelihood

• Assume you have a coin and flip it ten times and get (H, H,
T, T, T, H, H, T, T, T).

• What is p(H)?
• We might think it to be: 4/10 = 0.4. But why?
• Answer 1: Probability defined as a measure of long
running frequencies

• Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=θ?

• Idea find MLE estimate for θ
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Aside on Bernoulli Likelihood

• p(H) = θ and p(T) = 1− θ

• What is the PMF for first observation P(D1 = x|θ), where x =
0 for Tails and x = 1 for Heads?

• P(D1 = x|θ) = θx(1− θ)(1−x)

• Verify the above: if x = 0 (Tails), P(D1 = x|θ) = 1− θ and if x
= 1 (Heads), P(D1 = x|θ) = θ

• What is P(D1,D2, ...,Dn|θ)?
• P(D1,D2, ...,Dn|θ) = P(D1θ)P(D2|θ)...P(Dn|θ)
• P(D1,D2, ...,Dn|θ) = θnh(1− θ)nt

• Log-likelihood = LL(θ) = nh log(θ) + nt log(1− θ)

• ∂LL(θ)
∂θ = 0 =⇒ nh

θ + nt
1−θ = 0 =⇒ θMLE =

nh
nh+nt

22
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Learning Parameters

J(θ) = − log

{ n∏
i=1

{ 1
1+ e−xTi θ

}yi{
1− 1

1+ e−xTi θ
}1−yi}

J(θ) = −
{ n∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))
}

∂J(θ)
∂θj

= − ∂

∂θj

{ n∑
i=1

yilog(σθ(xi)) + (1− yi)log(1− σθ(xi))
}

= −
n∑
i=1

[
yi

∂

∂θj
log(σθ(xi)) + (1− yi)

∂

∂θj
log(1− σθ(xi))

]
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Learning Parameters

∂J(θ)
∂θj

= −
n∑
i=1

[
yi

∂

∂θj
log(σθ(xi)) + (1− yi)

∂

∂θj
log(1− σθ(xi))

]

= −
n∑
i=1

[
yi

σθ(xi)
∂

∂θj
σθ(xi) +

1− yi
1− σθ(xi)

∂

∂θj
(1− σθ(xi))

]
(1)

Aside:
∂

∂z
σ(z) = ∂

∂z
1

1+ e−z
= −(1+ e−z)−2 ∂

∂z
(1+ e−z)

=
e−z

(1+ e−z)2
=

(
1

1+ e−z

)(
e−z

1+ e−z

)
= σ(z)

{
1+ e−z

1+ e−z
− 1
1+ e−z

}
= σ(z)(1− σ(z))

24



Learning Parameters

Resuming from (1)

∂J(θ)
∂θj

= −
n∑
i=1

[
yi

σθ(xi)
∂

∂θj
σθ(xi) +

1− yi
1− σθ(xi)

∂

∂θj
(1− σθ(xi))

]

= −
n∑
i=1

[
yiσθ(xi)
σθ(xi)

(1−σθ(xi))
∂

∂θj
(xiθ)+

1− yi
1− σθ(xi)

(1−σθ(xi))
∂

∂θj
(1−σθ(xi))

]

= −
n∑
i=1

[
yi(1− σθ(xi))x

j
i − (1− yi)σθ(xi)x

j
i

]

= −
n∑
i=1

[
(yi − yiσθ(xi)− σθ(xi) + yiσθ(xi))x

j
i

]

=
n∑
i=1

[
σθ(xi)− yi

]
xji

25



Learning Parameters

∂J(θ)
θj

=
∑N

i=1
[
σθ(xi)− yi

]
xji

Now, just use Gradient Descent!
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Cost function convexity
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Hessian Matrix

The Hessian matrix of f(.) with respect to θ, written ∇2
θf (θ) or

simply as H, is the d× d matrix of partial derivatives,

∇2
θf (θ) =



∂2f (θ)
∂θ21

∂2f (θ)
∂θ1∂θ2

. . . ∂2f (θ)
∂θ1∂θn

∂2f (θ)
∂θ2∂θ1

∂2f (θ)
∂θ22

. . . ∂2f (θ)
∂θ2∂θn

. . . . . . . . . . . .

. . . . . . . . . . . .
∂2f (θ)
∂θn∂θ1

∂2f (θ)
∂θn∂θ2

. . . ∂2f (θ)
∂θ2n
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Newton’s Algorithm

The most basic second-order optimization algorithm is
Newton’s algorithm, which consists of updates of the form,

θk+1 = θk −H1
kgk

where gk is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f (θ)
around θk:

fquad(θ) = f (θk) + gTk(θ − θk) +
1
2
(θ − θk)

THk(θ − θk)

differentiating and equating to zero to solve for θk+1.
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Learning Parameters

Now assume:

g(θ) =
n∑
i=1

[
σθ(xi)− yi

]
xji = XT(σθ(X)− y)

πi = σθ(xi)

Let H represent the Hessian of J(θ)

H =
∂

∂θ
g(θ) = ∂

∂θ

n∑
i=1

[
σθ(xi)− yi

]
xji

=
n∑
i=1

[
∂

∂θ
σθ(xi)x

j
i −

∂

∂θ
yix

j
i

]

=
n∑
i=1

σθ(xi)(1− σθ(xi))xixTi

= XTdiag(σθ(xi)(1− σθ(xi)))X 30



Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and
Hessian of the negative log-likelihood are given by:

g(θ)k = XT(πk − y)
Hk = XTSkX
Sk = diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)

The Newton update at iteraion k + 1 for this model is as follows:

θk+1 = θk −H−1gk
= θk + (XTSkX)−1XT(y − πk)

= (XTSkX)−1[(XTSkX)θk + XT(y − πk)]

= (XTSkX)−1XT [SkXθk + y − πk]
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Regularized Logistic Regression

Unregularised:

J1(θ) = −
{ n∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))
}

L2 Regularization:
J(θ) = J1(θ) + λθTθ

L1 Regularization:
J(θ) = J1(θ) + λ|θ|
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Multi-Class Prediction

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression
3. Extend Binary Logistic Regression to Multi-Class Logistic
Regression
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Softmax

Z ∈ Rd

f (zi) =
ezi∑d
i=1 ezi

∴
∑

f (zi) = 1

f (zi) refers to probability of class i
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Softmax for Multi-Class Logistic Regression

k = 1, . . . , kclasses

P(y = k|x, θ) = exθk∑K
k=1 e

xθk
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

P(y = k|x, θ) = exθk∑K
k=1 exθk

P(y = 0|x, θ) = exθ0
exθ0 + exθ1

P(y = 1|x, θ) = exθ1
exθ0 + exθ1

=
exθ1

exθ1{1+ ex(θ0−θ1)}

=
1

1+ e−xθ′

= Sigmoid!
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Multi-Class Logistic Regression Cost

For 2 class we had:

J(θ) = −
{ n∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))
}

Extend to K-class:

J(θ) =
{ n∑

i=1

K∑
k=1

I{yi = k} log exiθk∑K
k=1 exiθk

}
i→ Sample # I: Identity Function

k→ Class I(true) = 1; I(false) = 0
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Multi-Class Logistic Regression Cost

Now:

∂J(θ)
∂θk

=
n∑
i=1

[
xi
{
I(yi = k)− P(yi = k|xi, θ)

}]
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