Logistic Regression

Nipun Batra
February 18, 2020
IIT Gandhinagar

Classification Technique

Classification Technique

Classification Technique

Aim: Probability(Tomatoes | Radius) ? or

Classification Technique

Aim: Probability(Tomatoes | Radius) ? or More generally, $\mathrm{P}(y=1 \mid X=x)$?

Idea: Use Linear Regression

Idea: Use Linear Regression

Generally,

$$
P(y=1 \mid x)=x \theta
$$

Idea: Use Linear Regression

Prediction:
If $\theta_{0}+\theta_{1} \times$ Radius $>0.5 \rightarrow$ Orange Else \rightarrow Tomato
Problem:
Range of $X \theta$ is $(-\infty, \infty)$
But $P(y=1 \mid \ldots) \in[0,1]$

Idea: Use Linear Regression

Idea: Use Linear Regression

Linear regression for classification gives a poor prediction!

Ideal boundary

- Have a decision function similar to the above (but not so sharp and discontinuous)

Ideal boundary

- Have a decision function similar to the above (but not so sharp and discontinuous)
- Aim: use linear regression still!

Idea: Use Linear Regression

Logistic Regression

Question. Can we still use Linear Regression?
Answer. Yes! Transform $\hat{y} \rightarrow[0,1]$

Logistic / Sigmoid Function

$$
\begin{aligned}
& \hat{y} \in(-\infty, \infty) \\
& \phi=\text { Sigmoid / Logistic Function }(\sigma) \\
& \phi(\hat{y}) \in[0,1] \\
& \qquad \sigma(z)=\frac{1}{1+e^{-z}}
\end{aligned}
$$

$$
z \rightarrow \infty
$$

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1
\end{aligned}
$$

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty
\end{aligned}
$$

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0 \\
& z=0
\end{aligned}
$$

Logistic / Sigmoid Function

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0 \\
& z=0 \\
& \sigma(z)=0.5
\end{aligned}
$$

Logistic / Sigmoid Function

Question. Could you use some other transformation (ϕ) of \hat{y} s.t.

$$
\phi(\hat{y}) \in[0,1]
$$

Yes! But Logistic Regression works.

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

$$
P(y=0 \mid X)=1-P(y=1 \mid X)=1-\frac{1}{1+e^{-X \theta}}=\frac{e^{-X \theta}}{1+e^{-X \theta}}
$$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

$$
\begin{aligned}
& P(y=0 \mid X)=1-P(y=1 \mid X)=1-\frac{1}{1+e^{-X \theta}}=\frac{e^{-X \theta}}{1+e^{-X \theta}} \\
& \therefore \frac{P(y=1 \mid x)}{1-P(y=1 \mid X)}=e^{x \theta} \Longrightarrow x \theta=\log \frac{P(y=1 \mid X)}{1-P(y=1 \mid X)}
\end{aligned}
$$

Odds (Used in betting)

$$
\frac{P(\text { win })}{P(\text { loss })}
$$

Here,

$$
\begin{gathered}
\text { Odds }=\frac{P(y=1)}{P(y=0)} \\
\log -\text { odds }=\log \frac{P(y=1)}{P(y=0)}=X \theta
\end{gathered}
$$

Logistic Regression

Q. What is decision boundary for Logistic Regression?

Logistic Regression

Q. What is decision boundary for Logistic Regression? Decision Boundary: $P(y=1 \mid X)=P(y=0 \mid X)$

$$
\begin{aligned}
& \text { or } \frac{1}{1+e^{-X \theta}}=\frac{e^{-x \theta}}{1+e^{-X \theta}} \\
& \text { or } e^{X \theta}=1 \\
& \text { or } X \theta=0
\end{aligned}
$$

Learning Parameters

Could we use cost function as:

$$
\begin{gathered}
J(\theta)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\hat{y}_{i}=\sigma(X \theta)
\end{gathered}
$$

Answer: No (Non-Convex)
(See Jupyter Notebook)

Cost function convexity

Learning Parameters

Likelihood $=P(D \mid \theta)$

$$
\begin{aligned}
& P(y \mid X, \theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, \theta\right) \\
& \text { where } y=0 \text { or } 1
\end{aligned}
$$

Learning Parameters

Likelihood $=P(D \mid \theta)$

$$
\begin{aligned}
P(y \mid X, \theta) & =\prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, \theta\right) \\
& =\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{1-y_{i}}
\end{aligned}
$$

[Above: Similar to $P(D \mid \theta)$ for Linear Regression; Difference Bernoulli instead of Gaussian]
$-\log P(y \mid X, \theta)=$ Negative Log Likelihood
$=$ Cost function will be minimising
$=J(\theta)$

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies
- Answer 2: What is likelihood of seeing the above sequence when the $\mathrm{p}($ Head $)=\theta$?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies
- Answer 2: What is likelihood of seeing the above sequence when the $\mathrm{p}($ Head $)=\theta$?
- Idea find MLE estimate for θ

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{n}}(1-\theta)^{n_{t}}$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{n}}(1-\theta)^{n_{t}}$
- Log-likelihood $=\mathcal{L L}(\theta)=n_{h} \log (\theta)+n_{t} \log (1-\theta)$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where $x=$ 0 for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if x
$=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{n}}(1-\theta)^{n_{t}}$
- Log-likelihood $=\mathcal{L L}(\theta)=n_{h} \log (\theta)+n_{t} \log (1-\theta)$
- $\frac{\partial \mathcal{L L}(\theta)}{\partial \theta}=0 \Longrightarrow \frac{n_{h}}{\theta}+\frac{n_{t}}{1-\theta}=0 \Longrightarrow \theta_{M L E}=\frac{n_{h}}{n_{h}+n_{t}}$

Learning Parameters

$$
\begin{aligned}
J(\theta) & =-\log \left\{\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{1-y_{i}}\right\} \\
J(\theta) & =-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\} \\
\frac{\partial J(\theta)}{\partial \theta_{j}} & =-\frac{\partial}{\partial \theta_{j}}\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\} \\
& =-\sum_{i=1}^{n}\left[y_{i} \frac{\partial}{\partial \theta_{j}} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \frac{\partial}{\partial \theta_{j}} \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right]
\end{aligned}
$$

Learning Parameters

$$
\begin{align*}
\frac{\partial J(\theta)}{\partial \theta_{j}} & =-\sum_{i=1}^{n}\left[y_{i} \frac{\partial}{\partial \theta_{j}} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \frac{\partial}{\partial \theta_{j}} \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
& =-\sum_{i=1}^{n}\left[\frac{y_{i}}{\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}} \sigma_{\theta}\left(x_{i}\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \tag{1}
\end{align*}
$$

Aside:

$$
\begin{aligned}
& \frac{\partial}{\partial z} \sigma(z)=\frac{\partial}{\partial z} \frac{1}{1+e^{-z}}=-\left(1+e^{-z}\right)^{-2} \frac{\partial}{\partial z}\left(1+e^{-z}\right) \\
&=\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}=\left(\frac{1}{1+e^{-z}}\right)\left(\frac{e^{-z}}{1+e^{-z}}\right)= \sigma(z)\left\{\frac{1+e^{-z}}{1+e^{-z}}-\frac{1}{1+e^{-z}}\right\} \\
&=\sigma(z)(1-\sigma(z))
\end{aligned}
$$

Learning Parameters

Resuming from (1)

$$
\begin{gathered}
\frac{\partial J(\theta)}{\partial \theta_{j}}=-\sum_{i=1}^{n}\left[\frac{y_{i}}{\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}} \sigma_{\theta}\left(x_{i}\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
=-\sum_{i=1}^{n}\left[\frac{y_{i} \sigma_{\theta}\left(x_{i}\right)}{\sigma_{\theta}\left(x_{i}\right)}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(x_{i} \theta\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
=-\sum_{i=1}^{n}\left[y_{i}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) x_{i}^{j}-\left(1-y_{i}\right) \sigma_{\theta}\left(x_{i}\right) x_{i}^{j}\right] \\
=-\sum_{i=1}^{n}\left[\left(y_{i}-y_{i} \sigma_{\theta}\left(x_{i}\right)-\sigma_{\theta}\left(x_{i}\right)+y_{i} \sigma_{\theta}\left(x_{i}\right)\right) x_{i}^{j}\right] \\
=\sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}
\end{gathered}
$$

Learning Parameters

$$
\frac{\partial J(\theta)}{\theta_{j}}=\sum_{i=1}^{N}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}
$$

Now, just use Gradient Descent!

Cost function convexity

Hessian Matrix

The Hessian matrix of $f\left(\right.$.) with respect to θ, written $\nabla_{\theta}^{2} f(\theta)$ or simply as \mathbb{H}, is the $d \times d$ matrix of partial derivatives,

$$
\nabla_{\theta}^{2} f(\theta)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(\theta)}{\partial \theta^{2}} & \frac{\partial^{2} f(\theta)}{\partial \theta^{2} \partial \theta_{2}} & \cdots & \frac{\partial^{2} f(\theta)}{\partial \theta^{2} \partial \theta_{n}} \\
\frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} f(\theta)}{\partial \theta_{2}^{2}} & \ldots & \frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{n}} \\
\cdots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{1}} & \frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{2}} & \ldots & \frac{\partial^{2} f(\theta)}{\partial \theta_{n}^{2}}
\end{array}\right]
$$

Newton's Algorithm

The most basic second-order optimization algorithm is Newton's algorithm, which consists of updates of the form,

$$
\theta_{k+1}=\theta_{k}-\mathbb{H}_{k}^{1} g_{k}
$$

where g_{k} is the gradient at step k. This algorithm is derived by making a second-order Taylor series approximation of $f(\theta)$ around θ_{k} :

$$
f_{\text {quad }}(\theta)=f\left(\theta_{k}\right)+g_{k}^{\top}\left(\theta-\theta_{k}\right)+\frac{1}{2}\left(\theta-\theta_{k}\right)^{T} \mathbb{H}_{k}\left(\theta-\theta_{k}\right)
$$

differentiating and equating to zero to solve for θ_{k+1}.

Learning Parameters

Now assume:

$$
\begin{gathered}
g(\theta)=\sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}=\mathrm{X}^{\top}\left(\sigma_{\theta}(\mathrm{X})-\mathrm{y}\right) \\
\pi_{i}=\sigma_{\theta}\left(x_{i}\right)
\end{gathered}
$$

Let \mathbb{H} represent the Hessian of $J(\theta)$

$$
\begin{aligned}
\mathbb{H}=\frac{\partial}{\partial \theta} g(\theta) & =\frac{\partial}{\partial \theta} \sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j} \\
& =\sum_{i=1}^{n}\left[\frac{\partial}{\partial \theta} \sigma_{\theta}\left(x_{i}\right) x_{i}^{j}-\frac{\partial}{\partial \theta} y_{i} x_{i}^{j}\right] \\
& =\sum_{i=1}^{n} \sigma_{\theta}\left(x_{i}\right)\left(1-\sigma_{\theta}\left(x_{i}\right)\right) x_{i} x_{i}^{\top} \\
& =X^{\top} \operatorname{diag}\left(\sigma_{\theta}\left(x_{i}\right)\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right) \mathbf{X}
\end{aligned}
$$

Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian of the negative log-likelihood are given by:

$$
\begin{aligned}
g(\theta)_{k} & =\mathrm{X}^{\top}\left(\pi_{\mathrm{k}}-\mathrm{y}\right) \\
\mathrm{H}_{k} & =\mathrm{X}^{\top} \mathrm{S}_{\mathrm{k}} \mathrm{X} \\
\mathrm{~S}_{k} & =\operatorname{diag}\left(\pi_{1 k}\left(1-\pi_{1 k}\right), \ldots, \pi_{n k}\left(1-\pi_{n k}\right)\right) \\
\pi_{i k} & =\operatorname{sigm}\left(\mathrm{x}_{\mathrm{i}} \theta_{\mathrm{k}}\right)
\end{aligned}
$$

The Newton update at iteraion $k+1$ for this model is as follows:

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\mathbb{H}^{-1} g_{k} \\
& =\theta_{k}+\left(X^{\top} S_{k} X\right)^{-1} X^{\top}\left(y-\pi_{k}\right) \\
& =\left(X^{\top} S_{k} X\right)^{-1}\left[\left(X^{\top} S_{k} X\right) \theta_{k}+X^{\top}\left(y-\pi_{k}\right)\right] \\
& =\left(X^{\top} S_{k} X\right)^{-1} X^{\top}\left[S_{k} X \theta_{k}+y-\pi_{k}\right]
\end{aligned}
$$

Regularized Logistic Regression

Unregularised:

$$
J_{1}(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

L2 Regularization:

$$
J(\theta)=\jmath_{1}(\theta)+\lambda \theta^{\top} \theta
$$

L1 Regularization:

$$
J(\theta)=J_{1}(\theta)+\lambda|\theta|
$$

Multi-Class Prediction

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression
3. Extend Binary Logistic Regression to Multi-Class Logistic Regression

Softmax

$$
\begin{gathered}
z \in \mathbb{R}^{d} \\
f\left(z_{i}\right)=\frac{e^{z_{i}}}{\sum_{i=1}^{d} e^{z_{i}}} \\
\therefore \sum f\left(z_{i}\right)=1
\end{gathered}
$$

$f\left(z_{i}\right)$ refers to probability of class i

Softmax for Multi-Class Logistic Regression

$$
\begin{gathered}
k=1, \ldots, k c \text { lasses } \\
P(y=k \mid x, \theta)=\frac{e^{e^{x \theta_{k}}}}{\sum_{k=1}^{k} e^{x \theta_{k}}}
\end{gathered}
$$

Softmax for Multi-Class Logistic Regression

For K = 2 classes,

$$
\begin{gathered}
P(y=k \mid x, \theta)=\frac{e^{x \theta_{k}}}{\sum_{k=1}^{K} e^{x \theta_{k}}} \\
P(y=0 \mid x, \theta)=\frac{e^{x \theta_{0}}}{e^{x \theta_{0}}+e^{x \theta_{1}}} \\
P(y=1 \mid x, \theta)=\frac{e x \theta_{1}}{e^{x \theta_{0}}+e^{x \theta_{1}}}=\frac{e^{x \theta_{1}}}{e^{x \theta_{1}}\left\{1+e^{x\left(\theta_{0}-\theta_{1}\right)}\right\}} \\
=\frac{1}{1+e^{-x \theta^{\prime}}} \\
=\text { Sigmoid! }
\end{gathered}
$$

Multi-Class Logistic Regression Cost

For 2 class we had:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

Extend to K-class:

$$
\begin{aligned}
& J(\theta)=\left\{\sum_{i=1}^{n} \sum_{k=1}^{K} \left\lvert\,\left\{y_{i}=k\right\} \log \frac{e^{x_{i} \theta_{k}}}{\sum_{k=1}^{K} e^{x_{i} \theta_{k}}}\right.\right\} \\
& i \rightarrow \text { Sample \# } \quad \text { I: Identity Function } \\
& k \rightarrow \text { Class } \quad \mid(\text { true })=1 ; \mid(\text { false })=0
\end{aligned}
$$

Now:

$$
\frac{\partial J(\theta)}{\partial \theta_{k}}=\sum_{i=1}^{n}\left[x_{i}\left\{l\left(y_{i}=k\right)-P\left(y_{i}=k \mid x_{i}, \theta\right)\right\}\right]
$$

