
Linear Rergression Time Complexity

Calculation

Nipun Batra

January 30, 2020

IIT Gandhinagar



Normal Equation

• Consider X ∈ RN×D

• N examples and D dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX )−1XT y?

1



Normal Equation

• Consider X ∈ RN×D

• N examples and D dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX )−1XT y?

1



Normal Equation

• Consider X ∈ RN×D

• N examples and D dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX )−1XT y?

1



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Normal Equation

• X has dimensions N × D, XT has dimensions D × N

• XTX is a matrix product of matrices of size: D × N and

N × D, which is O(D2N)

• Inversion of XTX is an inversion of a D × D matrix, which is

O(D3)

• XT y is a matrix vector product of size D × N and N × 1,

which is O(DN)

• (XTX )−1XT y is a matrix product of a D × D matrix and

D × 1 matrix, which is O(D2)

• Overall complexity: O(D2N) + O(D3) + O(DN) + O(D2)

= O(D2N) + O(D3)

• Scales cubic in the number of columns/features of X

2



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α
∂

∂θ0
(
∑
ε2i )

• θ1 = θ1 − α
∂

∂θ1
(
∑
ε2i )

• Question: Can you write the above for D dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)> (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)> (y − Xθ)
...

θD = θD − α ∂
∂θD

(y − Xθ)> (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)> (y − Xθ)

3



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α
∂

∂θ0
(
∑
ε2i )

• θ1 = θ1 − α
∂

∂θ1
(
∑
ε2i )

• Question: Can you write the above for D dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)> (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)> (y − Xθ)
...

θD = θD − α ∂
∂θD

(y − Xθ)> (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)> (y − Xθ)

3



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α
∂

∂θ0
(
∑
ε2i )

• θ1 = θ1 − α
∂

∂θ1
(
∑
ε2i )

• Question: Can you write the above for D dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)> (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)> (y − Xθ)
...

θD = θD − α ∂
∂θD

(y − Xθ)> (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)> (y − Xθ)

3



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α
∂

∂θ0
(
∑
ε2i )

• θ1 = θ1 − α
∂

∂θ1
(
∑
ε2i )

• Question: Can you write the above for D dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)> (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)> (y − Xθ)
...

θD = θD − α ∂
∂θD

(y − Xθ)> (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)> (y − Xθ)

3



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α
∂

∂θ0
(
∑
ε2i )

• θ1 = θ1 − α
∂

∂θ1
(
∑
ε2i )

• Question: Can you write the above for D dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)> (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)> (y − Xθ)
...

θD = θD − α ∂
∂θD

(y − Xθ)> (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)> (y − Xθ)

3



Gradient Descent

∂
∂θ (y − Xθ)>(y − Xθ)

= ∂
∂θ

(
y> − θ>X>

)
(y − Xθ)

= ∂
∂θ

(
y>y − θ>X>y − y>xθ + θ>X>Xθ

)
= −2X>y + 2X>xθ

= 2X>(Xθ − y)

4



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once!

5



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX>(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX>Xθ + αX>y

Complexity of computing X>y is O(DN)

Complexity of computing αX>y once we have X>y is O(D) since

X>y has D entries

Complexity of computing X>X is O(D2N) and then multiplying

with α is O(D2)

All of the above need only be calculated once! 5



Gradient Descent

For each of the t iterations, we now need to first multiply αX>X

with θ which is matrix multiplication of a D × D matrix with a

D × 1, which is O(D2)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?

O(tD2) + O(D2N) = O((t + N)D2)

6



Gradient Descent

For each of the t iterations, we now need to first multiply αX>X

with θ which is matrix multiplication of a D × D matrix with a

D × 1, which is O(D2)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?

O(tD2) + O(D2N) = O((t + N)D2)

6



Gradient Descent

For each of the t iterations, we now need to first multiply αX>X

with θ which is matrix multiplication of a D × D matrix with a

D × 1, which is O(D2)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?

O(tD2) + O(D2N) = O((t + N)D2)

6



Gradient Descent

For each of the t iterations, we now need to first multiply αX>X

with θ which is matrix multiplication of a D × D matrix with a

D × 1, which is O(D2)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?

O(tD2) + O(D2N) = O((t + N)D2)

6



Gradient Descent

For each of the t iterations, we now need to first multiply αX>X

with θ which is matrix multiplication of a D × D matrix with a

D × 1, which is O(D2)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?

O(tD2) + O(D2N) = O((t + N)D2)

6



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX>(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(ND)

• Computing Xθ − y is O(N)

• Computing αX> is O(ND)

• Computing αX>(Xθ − y) is O(ND)

• Computing θ = θ − αX>(Xθ − y) is O(N)

What is overall computational complexity?

O(NDt)

7


