Linear Rergression Time Complexity Calculation

Nipun Batra January 30, 2020

IIT Gandhinagar

• Consider $X \in \mathcal{R}^{N \times D}$

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions
- What is the time complexity of solving the normal equation $\hat{\theta} = (X^T X)^{-1} X^T y$?

• X has dimensions $N \times D$, X^T has dimensions $D \times N$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$
- Inversion of $X^T X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$
- Inversion of $X^T X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- X^Ty is a matrix vector product of size D × N and N × 1, which is O(DN)

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$
- Inversion of $X^T X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- X^Ty is a matrix vector product of size D × N and N × 1, which is O(DN)
- (X^TX)⁻¹X^Ty is a matrix product of a D × D matrix and D × 1 matrix, which is O(D²)

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$
- Inversion of $X^T X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- X^Ty is a matrix vector product of size D × N and N × 1, which is O(DN)
- (X^TX)⁻¹X^Ty is a matrix product of a D × D matrix and D × 1 matrix, which is O(D²)
- Overall complexity: $\mathcal{O}(D^2N) + \mathcal{O}(D^3) + \mathcal{O}(DN) + \mathcal{O}(D^2)$ = $\mathcal{O}(D^2N) + \mathcal{O}(D^3)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- $X^T X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2 N)$
- Inversion of $X^T X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- X^Ty is a matrix vector product of size D × N and N × 1, which is O(DN)
- (X^TX)⁻¹X^Ty is a matrix product of a D × D matrix and D × 1 matrix, which is O(D²)
- Overall complexity: $\mathcal{O}(D^2N) + \mathcal{O}(D^3) + \mathcal{O}(DN) + \mathcal{O}(D^2)$ = $\mathcal{O}(D^2N) + \mathcal{O}(D^3)$
- Scales cubic in the number of columns/features of X

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

• $\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

• Question: Can you write the above for *D* dimensional data in vectorised form?

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

• Question: Can you write the above for *D* dimensional data in vectorised form?

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (y - X\theta)^\top (y - X\theta)$$

 $\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (y - X\theta)^\top (y - X\theta)$
:
 $\theta_D = \theta_D - \alpha \frac{\partial}{\partial \theta_D} (y - X\theta)^\top (y - X\theta)$

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

• Question: Can you write the above for *D* dimensional data in vectorised form?

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (y - X\theta)^\top (y - X\theta)$$

 $\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (y - X\theta)^\top (y - X\theta)$
:
 $\theta_D = \theta_D - \alpha \frac{\partial}{\partial \theta_D} (y - X\theta)^\top (y - X\theta)$
• $\theta = \theta - \alpha \frac{\partial}{\partial \theta} (y - X\theta)^\top (y - X\theta)$

$$\begin{split} & \frac{\partial}{\partial \theta} (y - X\theta)^\top (y - X\theta) \\ &= \frac{\partial}{\partial \theta} \left(y^\top - \theta^\top X^\top \right) (y - X\theta) \\ &= \frac{\partial}{\partial \theta} \left(y^\top y - \theta^\top X^\top y - y^\top x\theta + \theta^\top X^\top X\theta \right) \\ &= -2X^\top y + 2X^\top x\theta \\ &= 2X^\top (X\theta - y) \end{split}$$

We can write the vectorised update equation as follows, for each iteration $% \left({{{\mathbf{r}}_{i}}} \right)$

 $\theta = \theta - \alpha X^{\top} (X\theta - y)$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For t iterations, what is the computational complexity of our gradient descent solution?

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top}X$ is $\mathcal{O}(D^2N)$ and then multiplying with α is $\mathcal{O}(D^2)$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top}X$ is $\mathcal{O}(D^2N)$ and then multiplying with α is $\mathcal{O}(D^2)$

All of the above need only be calculated once!

For each of the *t* iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

For each of the *t* iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

For each of the *t* iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

For each of the *t* iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

 $\mathcal{O}(tD^2) + \mathcal{O}(D^2N) = \mathcal{O}((t+N)D^2)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top} (X \theta - y)$

For each iteration, we have:

• Computing $X\theta$ is $\mathcal{O}(ND)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top} (X \theta y)$ is $\mathcal{O}(N)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top} (X \theta y)$ is $\mathcal{O}(N)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top} (X \theta y)$ is $\mathcal{O}(N)$

What is overall computational complexity?

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top} (X \theta y)$ is $\mathcal{O}(N)$

What is overall computational complexity? O(NDt)