Geometric Interpretation of Linear Regression

Nipun Batra February 7, 2023

IIT Gandhinagar

Let $v_1, v_2, v_3, \ldots, v_i$ be vectors in \mathbb{R}^D , where *D* denotes the dimensions.

- Let $v_1, v_2, v_3, \ldots, v_i$ be vectors in \mathbb{R}^D , where *D* denotes the dimensions.
- A linear combination of $v_1, v_2, v_3, \ldots, v_i$ is of the following form

- Let $v_1, v_2, v_3, \ldots, v_i$ be vectors in \mathbb{R}^D , where *D* denotes the dimensions.
- A linear combination of $v_1, v_2, v_3, \ldots, v_i$ is of the following form

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_i v_i$$

where $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_i \in \mathbb{R}$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions.

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$ Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$

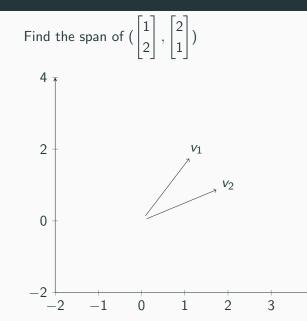
$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

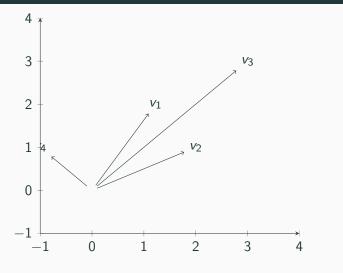
Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_i v_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i .

Find the span of
$$\begin{pmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$





$$v_3 = v_1 + v_2$$
 and $v_4 = v_1 - v_2$
Span $((v_1, v_2)) \in \mathcal{R}^2$

4

Find the span of
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Find the span of
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Can we obtain a point (x, y) s.t. x = 3y?

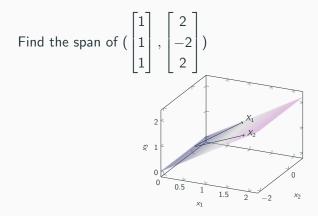
Find the span of
$$\begin{pmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
)
Can we obtain a point (x, y) s.t. x = 3y?
No

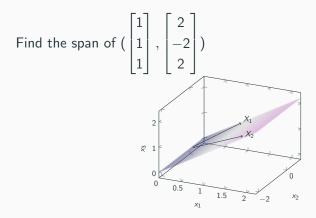
Find the span of
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Can we obtain a point (x, y) s.t. x = 3y?
No

Span of the above set is along the line y = 2x

Find the span of
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$$





The span is the plane z = x or $x_3 = x_1$

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

• We are trying to learn θ for $\hat{y} = X\theta$ such that $||y - \hat{y}||_2$ is minimised

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn θ for $\hat{y} = X\theta$ such that $||y \hat{y}||_2$ is minimised
- Consider the two columns of X. Can we write $X\theta$ as the span of $\begin{pmatrix} 1\\1\\1 \\ 1 \end{pmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$?

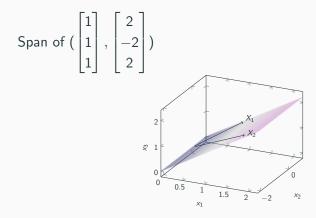
Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

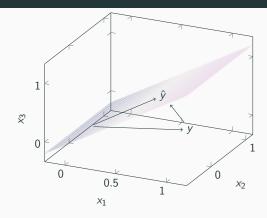
- We are trying to learn θ for $\hat{y} = X\theta$ such that $||y \hat{y}||_2$ is minimised
- Consider the two columns of X. Can we write $X\theta$ as the span of $\begin{pmatrix} 1\\1\\1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$?
- We wish to find \hat{y} such that

$$\underset{\hat{y} \in SPAN\{\bar{x_1}, \bar{x_2}, \dots, \bar{x_D}\}}{\arg\min} ||y - \hat{y}||_2$$

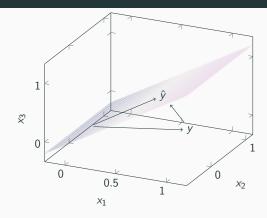
Span of
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$$



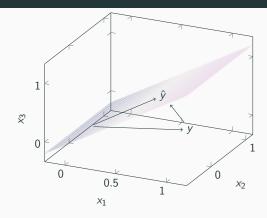
The span is the plane z = x or $x_3 = x_1$



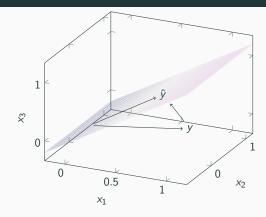
• We seek a \hat{y} in the span of the columns of X such that it is closest to y



- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y \hat{y} \perp x_j \forall j$ or $x_j^T (y \hat{y}) = 0$



- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y \hat{y} \perp x_j \forall j$ or $x_i^T (y \hat{y}) = 0$
- $X^T(y X\theta) = 0$



- We seek a \hat{y} in the span of the columns of X such that it is closest to y
- This happens when $y \hat{y} \perp x_j \forall j$ or $x_i^T (y \hat{y}) = 0$
- $X^T(y X\theta) = 0$

•
$$X^T y = X^T X \theta$$
 or $\hat{\theta} = (X^T X)^{-1} X^T y$