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Aim: Probability(Orange | Radius) ? or
More generally, P(y = 1|X = x)?‘
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Idea: Use Linear Regression
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P(y = Orange|Radius = r) = 0o+ 61 x r

Generally,
P(y=1|x)=x"6

For N examples
P(y = 11X) = X0 3



Idea: Use Linear Regression

Prediction:

If 0o + 01 x Radius > 0.5 — Orange
Else — Tomato

Problem:

Range of X6 is (—o0, 00)

But P(y =1]...) € [0,1]
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Idea: Use Linear Regression
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Linear regression for classification gives a poor prediction!
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e Have a decision function similar to the above (but not so
sharp and discontinuous)

e Aim: use linear regression still!



Idea: Use Linear Regression

Logistic Regression
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Question. Can we still use Linear Regression?
Answer. Yes! Transform x"6 — [0, 1]



Logistic / Sigmoid Function

xT6 € (—o0,0)
¢ = Sigmoid / Logistic Function (o)
¢(xT0) € [0,1]
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Logistic / Sigmoid Function

Z — OO
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Logistic / Sigmoid Function
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Logistic / Sigmoid Function

Question. Could you use some other transformation (¢) of x "6 s.t.

o(x70) € [0,1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

1
Q. Write X6 in a more convenient form (as P(y = 1|X),

P(y = 0|X))

12



Logistic / Sigmoid Function

1
Ply =1X)=0(X0) = ——;
Q. Write X6 in a more convenient form (as P(y = 1|X),

P(y = 0|X))
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Logistic / Sigmoid Function

1
Py = 1|X) = o(X0) = 15 e X0
Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 01X))
1 e XY

Ply=0X)=1-P(y=1X)=1-

1+e X0 14e X0
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Logistic / Sigmoid Function

1
Py = 1|X) = o(X0) = 15 e X0
Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 01X))
1 e XY

P(y=0X)=1—P(y =1|X)=1— =

P(y = 1|X) X0 P(y =1|X)
TPy =tx) ¢ T KTl X
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Odds (Used in betting)

P(win)
P(loss)

Here,

_Ply=1)
Odds = m

logits = log-odds = log Zgzég = X0

14



Logits Usage

Docs > torchnn > CrossEntropyLoss

CROSSENTROPYLOSS /

CLASS torch.nn.CrossEntropyLoss (weight=None, size_average=jne, ignore_index=- 100,
reduce=None, reduction="mean ', label_smoothing, ) [SOURCE]

This criterion computes the cross entropy loss between input logits and target.

ii5)



Logits Usage

Computes the cross-entropy loss between true labels and predicted labels.

Inherits From: Loss

@ View aliases

© 0

tf .keras. losses.BinaryCrossentropy(
from_logits=False,
label_smoothing=0.9,
axis=-1,
reduction=losses_utils.ReductionV2.AUTO,
name='binary_cro

sentropy’

Used in the notebooks

Used in the guide Used in the tutorials.
+ The Functional API « Load a pandas DataFrame
o Transfer learning and fine-tuning o Transfer learing and fine-tuning

« Distributed training with Tens

Flow « Basic text classification
« Estimators  Warm-start embedding layer matrix

« Making new Layers and Models via subclassing « Parameter server training with ParameterServerStrategy

Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:

« y_true (true label): This is either 0 or 1
« y_pred (predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a
logit, (i.e, value in [-inf, infl when from_logits=True ) or a probability (i.e, value in [0., 1.] when
from_logits=False ).

Recommended Usage: (set fron_logits=True)
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Logits Usage

TensorFlow > Resources > Probability > API Was this helpful? 1f7 51

tfp.distributions.Bernoulli O -

O View source on GitHub

Bernoulli distribution.

Inherits From: Distribution, AutoCompositeTensor

€« D
tfp.distributions.Bernoulli(
logits=None,
probs=None,
dtype=tf.int32,
validate_args=False,
allow_nan_stats=True,
name='Bernoulli’
)
The Bernoulli distribution with probs parameter, i.e., the probability of a 1 outcome (vs a @ outcome).
Args
logits An N-D Tensor representing the log-odds of a 1 event. Each entry in the Tensor parameterizes an
independent Bemoulli distribution where the p of an event is Only one of
logits or probs should be passed in.
probs An N-D Tensor representing the probability of a 1 event. Each entry in the Tensor parameterizes an

independent Bernoulli distribution. Only one of Logits o probs should be passed in.

17



Logistic Regression

Q. What is decision boundary for Logistic Regression?

18



Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

1 o efXO
OF THe=X0 = T4e- X0
oreX? =1
or X0 =0

19



Example with 2 input features

Notebook:
https://nipunbatra.github.io/ml2023 /notebooks/posts/logistic.html

20



Learning Parameters

Could we use cost function as:

Answer: No (Non-Convex)
(See Jupyter Notebook)

21



Cost function convexity

RMSE contour plot

10 4 18.0 RMSE surface plot
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Learning Parameters

Likelihood = P(D)|0)

P(y|X,0) = ITi, P(vilxi, 0)
wherey = 0 or 1

23



Learning Parameters

Likelihood = P(D)|6)

P(y|X,0) HPy,!x,,

i 1 1 1-y;
_H{1+eXIT } { _1_'_eX[T9}

[Above: Similar to P(D|#) for Linear Regression;

Difference Bernoulli instead of Gaussian]

—log P(y| X, 0) = Negative Log Likelihood
= Cost function will be minimising

= J(0) 24



Likelihood Visualisation

Likelihood as a function of (6o, 1)

MLE

1.05
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0.60
0.45
0.30
0.15
0.00
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Aside on Bernoulli Likelihood

e Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

26
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Aside on Bernoulli Likelihood

e Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

e What is p(H)?
e We might think it to be: 4/10 = 0.4. But why?
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Aside on Bernoulli Likelihood

Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

What is p(H)?
We might think it to be: 4/10 = 0.4. But why?

Answer 1: Probability defined as a measure of long running
frequencies
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T, T, T,HHTTT).

e What is p(H)?
e We might think it to be: 4/10 = 0.4. But why?

e Answer 1: Probability defined as a measure of long running
frequencies
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when the p(Head)=67

26



Aside on Bernoulli Likelihood

e Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

e What is p(H)?
e We might think it to be: 4/10 = 0.4. But why?

e Answer 1: Probability defined as a measure of long running
frequencies

e Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=67

e |dea find MLE estimate for 6

26



Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

e P(Dy = x|f) = 6*(1 — )1

o Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

P(D; = x|0) = (1 — 6)(1=x)

Verify the above: if x = 0 (Tails), P(D; = x|f#) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

What is P(Dy, Ds, ..., Dp|6)?
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x = 1 (Heads), P(D; = x|0) =6

What is P(Dy, Ds, ..., Dp|6)?

P(D1, Dy, ..., D,|0) = P(D1|0)P(D3|0)...P(D,|0)
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

o P(D; = x|0) = 0*(1 — )=

o Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

e What is P(D1, D», ..., D,]0)?

e P(D1,Ds,...,Dn|0) = P(D1|0)P(D2|0)...P(D,|0)

e P(D1,Dy,...,Dpl0) = 6™ (1 — 6)™

o Log-likelihood = LL(#) = nplog(#) + n¢log(1 — 6)
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

o P(D; = x|0) = 0*(1 — )=

o Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

e What is P(D1, Dy, ..., D,]0)?

e P(D1,Ds,...,Dn|0) = P(D1|0)P(D2|0)...P(D,|0)

e P(D1,Dy,...,Dpl0) = 6™ (1 — 6)™

o Log-likelihood = LL(#) = nplog(#) + n¢log(1 — 6)

dLL(6)

— np ne  __ — nNp
0 =0 = F+15=0—= HMLE_nh+nt
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Learning Parameters

J(0) = —|og{ﬁ {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}
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Learning Parameters

n

J(0) = —|og{H {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}

This cost function is called cross-entropy.
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Learning Parameters

J(0) = —|og{ﬁ {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}

This cost function is called cross-entropy.

Why?

28



Interpretation of Cross-Entropy Cost Function
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Let us try to write the cost function for a single example:
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Let us try to write the cost function for a single example:

J(0) = —yilog ¥i — (1 — yi) log(1 — §i)
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Let us try to write the cost function for a single example:

J(0) = —yilog ¥i — (1 — yi) log(1 — §i)

First, assume y; is 0, then if ¥; is 0, the loss is 0; but, if y; is 1, the
loss tends towards infinity!

0
3
1

=3
I

Cost when y
~
1

N}
I

o
I
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Interpretation of Cross-Entropy Cost Function
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilog yi — (1 — yi)log(1 — §i)
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilog yi — (1 — yi)log(1 — §i)

Now, assume y; is 1, then if ¥; is 0, the loss is huge; but, if y; is 1,
the loss is zero!

Cost wheny =1
0 ~ o 0
L L L L

o
1

T
0.0 0.2 0.4 0.6 0.8 1.0
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Cost function convexity

Cross-entropy contour plot
900 Cross-entropy surface plot
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100
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Learning Parameters

0J©0)

00; B

S

{ZW%@& (1 )og(1 = oo(x))

n

=30 [ st + 1 = ) g loga = o)
1

=
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Learning Parameters

8J©) K[ 9 0
L == [y ots0) + 1) g ios ()

I o S 7R N o) A
_ ;[UG(X;) 5109 + Ty = ool
Aside
9 _ 9 1 _ -z —2& =2

- (1:ez—z)2 - (1 +1e—z> <1Jerez—z> - ”(2){112—;1 +1e—z}
= o(2)(1 - 0(2))
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Learning Parameters

Resuming from (1)

0J0) _ N~[ v O -y 0
== | o

i=1

> [W(1—ve(x,-))§,j(x,-Te)+1_;0{;l_)(1—ae(x,-))f@(1—ae(x,-))i

=> [09(Xi) - y,}Xf

i=1
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Learning Parameters

8J959) = va 1 [09 2 —y,]

20 =N 9 —yi) o

J

Now, just use Gradient Descent!
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Logistic Regression with feature transformation

2 - . L 1Y °
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Oranges
—2 - Il Tomatoes

-2 0 2

What happens if you apply logistic regression on the above data?

36



Logistic Regression with feature transformation

Oranges Predict oranges
Il Tomatoes Predict tomatoes
2 . ’ .
L]
1 1 o® 08 )
° @ .
g 0 o o °
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. e o ®
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72 -
T T T
-2 0 2
x1

Linear boundary will not be accurate here. What is the technical

name of the problem?
37



Logistic Regression with feature transformation

Oranges Predict oranges
Il Tomatoes Predict tomatoes
2 . ’ .
L]
1 1 o® 08 )
° @ .
g 0 o o °
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TR Ad L]
. e o ®
_ »o, o
72 -
T T T
-2 0 2
x1

Linear boundary will not be accurate here. What is the technical

name of the problem? Bias!
37



Logistic Regression with feature transformation

1
oo(x) X
X X2
P(x) = ¢1:( ) =| 3 |¢€ RK
Pr-1(x) :
LK1
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Logistic Regression with feature transformation

Oranges Predict oranges
Il Tomatoes Predict tomatoes
2 . ’ .
[ )
1 1 o® 08 )
° @ .
8 0 TR o
L[]
o %o L]
. e o ®
_ ol o
72 -
T T T
-2 0 2
x1

Using x12,x22 as additional features, we are able to learn a more
accurate classifier.
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Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Multi-Class Prediction
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How would you learn a classifier? Or, how would you expect the
classifier to learn decision boundaries?
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Multi-Class Prediction
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Multi-Class Prediction

4.5 7 ° o [ setosa
° .
40 - ° o © o i vtsrsllcc'ﬂor
\g/ o : P (-] ] o v'lrglmca
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1. Use one-vs.-all on Binary Logistic Regression

2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class Logistic
Regression

42



Multi-Class Prediction
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Multi-Class Prediction

° o I setosa

L
o
I
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2.5

(] ° e I v1rgmica
0o
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sepal width (cm
'8

T T T
6 7 8
sepal length (cm)

l
2.0 °
T
5

Learn P(setosa (class 1)) = F(X61)
P(versicolor (class 2)) = F(X62)
P(virginica (class 3)) = F(X#63)
Goal: Learn 6,Vi € {1,2,3}
Question: What could be an F7?

o> PPN =
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Multi-Class Prediction

4.5 1 ° . setosa
° .
40+ ° . °© 5 v.chTCf)lor
g 800 © . virginica
~ 3.5 - L] ° L
= ee ° ° og
] ° ° °
Z 3.0 og ’.& ° 8:"o oo, oo
g 2.5+ ge ®e °
ol "o ° o®
2.0 1 °
T T T
4 5 6 8

sepal length (cm)
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Multi-Class Prediction

4.5 ° o [ setosa
° .
40 - ° . . ° i v.chTCf)lor
\;E,/ . 2 oo ° . V.lrgmlca
= 3.5 ee o°
]
E 3.0 ‘. ° ."o oo 00
3 "*'n- %%
§ 2.5 g °
ol "o ° -
2.0 1 °
T T T T
4 5 6 7 8

sepal length (cm)

Question: What could be an F7?

Property: Y2 | F(X6;) =1

Also F(z) € [0, 1]

Also, F(z) has squashing proprties: R — [0, 1]

B LN

44



ZeR?
e?i
F(zi)
Z:'j:l e’

F(z;) refers to probability of class i
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Softmax for Multi-Class Logistic Regression

k={1,...,K}classes

0=1|6, 6, - Ok

gk = Ply = kIX,6) = <&

K
> k=1 X%k
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

X0

Ply = kIX,8) = s

X0
Py =0X.9) = g —oxo
X0, X0
Ply =11X.0) = —xg,—oxar = X0 {1 1 eX(6o—01)}
1
e

= Sigmoid!
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2

Let us calculate — Zi:l yKlog gk
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik

= —(0 x log(0.1) + 1 x log(0.8) + 0 x log(0.1))

48



Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik
= —(0 x log(0.1) + 1 x log(0.8) 4+ 0 x log(0.1))

Tends to zero
48



Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2

Let us calculate — Zi:l yKlog gk
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik

= —(0 x log(0.1) + 1 x log(0.4) 4+ 0 x log(0.1))

49



Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |g?
0 y,-1
yvi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik
= —(0 x log(0.1) + 1 x log(0.4) 4+ 0 x log(0.1))

High number! Huge penalty for misclassification!
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Multi-Class Logistic Regression Cost

For 2 class we had:

J(9) = —{ Zy,- log(ag(x;)) + (1 — y;) log(1 — O'g(X,'))}
i=1
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Multi-Class Logistic Regression Cost

For 2 class we had:

J(9) = —{ Zy,- log(ag(x;)) + (1 — y;) log(1 — O'g(X,'))}
i=1

More generally,

50



Multi-Class Logistic Regression Cost

For 2 class we had:
{3 wiostouto) + (1.~ ) tog(1 — on(x) |
i=1
More generally,

{ Zy, log(9;) + (1 — i) log(1 — y,)}

Extend to K-class:

50



Multi-Class Logistic Regression Cost Gradient

Bl



The Hessian matrix of f(.) with respect to 6, written V3£ () or
simply as HI, is the d x d matrix of partial derivatives,

CO%f(0)  9%f(0) 92f(0) T
002 00100, 90100,
°f(0)  0°f(0) 92f(0)
00,00, 86% 060,00,
Vof(6) =
0°f(0)  9%f(0) 92f(0)
L 90,001 90,00, - 002 |
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Newton’s Algorithm

The most basic second-order optimization algorithm is Newton's
algorithm, which consists of updates of the form,

Orr1 = Ok — Higk

where gy is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f(#) around
O

fouad(0) = £(0k) + g (6 — k) + %(9 — 60) TH (6 — 6))

differentiating and equating to zero to solve for 0y 1.
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Learning Parameters

Now assume:
n

£(0) =3 |o0) ~ i = XT(00(%)

i=1
T = O'@(X,‘)
Let H represent the Hessian of J(0)

o 0 < j
- Lo []

M

0 .
L o) — < yxd
{ oo = |

_ Z oo(xi)(1 — a9(x;))xix;"
i=1

= XTdiag(og(xi)(1 — a9(x;)))X
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Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian
of the negative log-likelihood are given by:

g(0)k = X" (mc —y)

Hy = XTS5 X

Sy = diag(m1k(1 — m1k)s -« -y k(1 — 7))

Tik = sigm(xifx)

The Newton update at iteraion k + 1 for this model is as follows:
Ors1 =0k —H g

=0k + (XTS X)X T (y — i)
= (XTSIX) HXTSkX)0k + X (y — m)]
= (XTS X)X T[Sk X0k + y — ]

55



Regularized Logistic Regression

Unregularised:
J1(0) = —{ Zy,- log(oa(x;)) + (1 — yi) log(1 — O'@(X,‘))}
i=1

L2 Regularization:
J(B) = J1(8) + 2076

L1 Regularization:
J(0) = () + \|9]

56



