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Idea: Use Linear Regression
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P(y = Orange|Radius = r) = θ0 + θ1 × r

Generally,

P(y = 1|x) = xT θ

For N examples

P(y = 1|X ) = Xθ
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Idea: Use Linear Regression

Prediction:

If θ0 + θ1 × Radius > 0.5 → Orange

Else → Tomato

Problem:

Range of Xθ is (−∞,∞)

But P(y = 1| . . .) ∈ [0, 1]
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Idea: Use Linear Regression
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Linear regression for classification gives a poor prediction!
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• Have a decision function similar to the above (but not so

sharp and discontinuous)

• Aim: use linear regression still!
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Idea: Use Linear Regression
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Sigmoid

Question. Can we still use Linear Regression?

Answer. Yes! Transform xT θ → [0, 1]
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Logistic / Sigmoid Function

xT θ ∈ (−∞,∞)

ϕ = Sigmoid / Logistic Function (σ)

ϕ(xT θ) ∈ [0, 1]

σ(z) =
1

1 + e−z
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Logistic / Sigmoid Function

z → ∞

σ(z) → 1

z → −∞
σ(z) → 0

z = 0

σ(z) = 0.5
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Logistic / Sigmoid Function

Question. Could you use some other transformation (ϕ) of xT θ s.t.

ϕ(xT θ) ∈ [0, 1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

P(y = 1|X ) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X ),

P(y = 0|X ))
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Logistic / Sigmoid Function

P(y = 1|X ) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X ),

P(y = 0|X ))

P(y = 0|X ) = 1− P(y = 1|X ) = 1− 1

1 + e−Xθ
=

e−Xθ

1 + e−Xθ

∴
P(y = 1|X )

1− P(y = 1|X )
= eXθ =⇒ Xθ = log

P(y = 1|X )

1− P(y = 1|X )

13



Logistic / Sigmoid Function

P(y = 1|X ) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X ),

P(y = 0|X ))

P(y = 0|X ) = 1− P(y = 1|X ) = 1− 1

1 + e−Xθ
=

e−Xθ

1 + e−Xθ

∴
P(y = 1|X )

1− P(y = 1|X )
= eXθ =⇒ Xθ = log

P(y = 1|X )

1− P(y = 1|X )

13



Logistic / Sigmoid Function

P(y = 1|X ) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X ),

P(y = 0|X ))

P(y = 0|X ) = 1− P(y = 1|X ) = 1− 1

1 + e−Xθ
=

e−Xθ

1 + e−Xθ

∴
P(y = 1|X )

1− P(y = 1|X )
= eXθ =⇒ Xθ = log

P(y = 1|X )

1− P(y = 1|X )

13



Odds (Used in betting)

P(win)

P(loss)

Here,

Odds =
P(y = 1)

P(y = 0)

logits = log-odds = log P(y=1)
P(y=0) = Xθ
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Logits Usage
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Logits Usage
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Logits Usage

17



Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?

Decision Boundary: P(y = 1|X ) = P(y = 0|X )

or 1
1+e−Xθ = e−Xθ

1+e−Xθ

or eXθ = 1

or Xθ = 0

19



Example with 2 input features

Notebook:

https://nipunbatra.github.io/ml2023/notebooks/posts/logistic.html
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Learning Parameters

Could we use cost function as:

J(θ) =
∑

(yi − ŷi )
2

ŷi = σ(Xθ)

Answer: No (Non-Convex)

(See Jupyter Notebook)
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Cost function convexity
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Learning Parameters

Likelihood = P(D|θ)

P(y |X , θ) =
∏n

i=1 P(yi |xi , θ)
where y = 0 or 1
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Learning Parameters

Likelihood = P(D|θ)

P(y |X , θ) =
n∏

i=1

P(yi |xi , θ)

=
n∏

i=1

{ 1

1 + e−xTi θ

}yi
{
1− 1

1 + e−xTi θ

}1−yi

[Above: Similar to P(D|θ) for Linear Regression;

Difference Bernoulli instead of Gaussian]

− logP(y |X , θ) = Negative Log Likelihood

= Cost function will be minimising

= J(θ)
24



Likelihood Visualisation
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Aside on Bernoulli Likelihood

• Assume you have a coin and flip it ten times and get (H, H,

T, T, T, H, H, T, T, T).

• What is p(H)?

• We might think it to be: 4/10 = 0.4. But why?

• Answer 1: Probability defined as a measure of long running

frequencies

• Answer 2: What is likelihood of seeing the above sequence

when the p(Head)=θ?

• Idea find MLE estimate for θ
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Aside on Bernoulli Likelihood

• p(H) = θ and p(T ) = 1− θ

• What is the PMF for first observation P(D1 = x |θ), where x

= 0 for Tails and x = 1 for Heads?

• P(D1 = x |θ) = θx(1− θ)(1−x)

• Verify the above: if x = 0 (Tails), P(D1 = x |θ) = 1− θ and if

x = 1 (Heads), P(D1 = x |θ) = θ

• What is P(D1,D2, ...,Dn|θ)?
• P(D1,D2, ...,Dn|θ) = P(D1|θ)P(D2|θ)...P(Dn|θ)
• P(D1,D2, ...,Dn|θ) = θnh(1− θ)nt

• Log-likelihood = LL(θ) = nh log(θ) + nt log(1− θ)

• ∂LL(θ)
∂θ = 0 =⇒ nh

θ + nt
1−θ = 0 =⇒ θMLE = nh

nh+nt

27
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Learning Parameters

J(θ) = − log

{ n∏
i=1

{ 1

1 + e−xTi θ

}yi
{
1− 1

1 + e−xTi θ

}1−yi
}

J(θ) = −
{ n∑

i=1

yi log(σθ(xi )) + (1− yi ) log(1− σθ(xi ))

}

This cost function is called cross-entropy.

Why?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Let us try to write the cost function for a single example:

J(θ) = −yi log ŷi − (1− yi ) log(1− ŷi )

First, assume yi is 0, then if ŷi is 0, the loss is 0; but, if ŷi is 1, the

loss tends towards infinity!
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loss tends towards infinity!

0.0 0.2 0.4 0.6 0.8 1.0

ŷ
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(θ) = −yi log ŷi − (1− yi ) log(1− ŷi )

Now, assume yi is 1, then if ŷi is 0, the loss is huge; but, if ŷi is 1,

the loss is zero!
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Cost function convexity
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Learning Parameters

∂J(θ)

∂θj
= − ∂

∂θj

{ n∑
i=1

yi log(σθ(xi )) + (1− yi )log(1− σθ(xi ))

}

= −
n∑

i=1

[
yi

∂

∂θj
log(σθ(xi )) + (1− yi )

∂

∂θj
log(1− σθ(xi ))

]
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Learning Parameters

∂J(θ)

∂θj
= −

n∑
i=1

[
yi

∂

∂θj
log(σθ(xi )) + (1− yi )

∂

∂θj
log(1− σθ(xi ))

]

= −
n∑

i=1

[
yi

σθ(xi )

∂

∂θj
σθ(xi ) +

1− yi
1− σθ(xi )

∂

∂θj
(1− σθ(xi ))

]
(1)

Aside:

∂

∂z
σ(z) =

∂

∂z

1

1 + e−z
= −(1 + e−z)−2 ∂

∂z
(1 + e−z)

=
e−z

(1 + e−z)2
=

(
1

1 + e−z

)(
e−z

1 + e−z

)
= σ(z)

{
1 + e−z

1 + e−z
− 1

1 + e−z

}
= σ(z)(1− σ(z))
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Learning Parameters

Resuming from (1)

∂J(θ)

∂θj
= −

n∑
i=1

[
yi

σθ(xi )

∂

∂θj
σθ(xi ) +

1− yi
1− σθ(xi )

∂

∂θj
(1− σθ(xi ))

]

= −
n∑

i=1

[
yiσθ(xi )

σθ(xi )
(1−σθ(xi ))

∂

∂θj
(xTi θ)+

1− yi
1− σθ(xi )

(1−σθ(xi ))
∂

∂θj
(1−σθ(xi ))

]

= −
n∑

i=1

[
yi (1− σθ(xi ))x

j
i − (1− yi )σθ(xi )x

j
i

]

= −
n∑

i=1

[
(yi − yiσθ(xi )− σθ(xi ) + yiσθ(xi ))x

j
i

]

=
n∑

i=1

[
σθ(xi )− yi

]
x ji
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Learning Parameters

∂J(θ)
θj

=
∑N

i=1

[
σθ(xi )− yi

]
x ji

∂J(θ)
θj

=
∑N

i=1

[
ŷi − yi

]
x ji

Now, just use Gradient Descent!
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Logistic Regression with feature transformation

−2 0 2

x1

−2

−1

0

1

2

x
2

Oranges

Tomatoes

What happens if you apply logistic regression on the above data?
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Logistic Regression with feature transformation

−2 0 2

x1

−2

−1

0

1

2

x
2

Oranges

Tomatoes

Predict oranges

Predict tomatoes

Linear boundary will not be accurate here. What is the technical

name of the problem?

Bias!
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Logistic Regression with feature transformation

ϕ(x) =


ϕ0(x)

ϕ1(x)
...

ϕK−1(x)

 =



1

x

x2

x3

...

xK−1


∈ RK
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Logistic Regression with feature transformation

−2 0 2

x1

−2

−1

0

1

2

x
2

Oranges

Tomatoes

Predict oranges

Predict tomatoes

Using x21 , x
2
2 as additional features, we are able to learn a more

accurate classifier.
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Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Multi-Class Prediction

5 6 7 8

sepal length (cm)

2.0

2.5

3.0

3.5

4.0

4.5
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a
l

w
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th
(c

m
)

I. setosa

I. versicolor

I. virginica

How would you learn a classifier? Or, how would you expect the

classifier to learn decision boundaries?
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Multi-Class Prediction

4 5 6 7 8

sepal length (cm)
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3.5

4.0

4.5
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w
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m
)

I. setosa

I. versicolor

I. virginica

1. Use one-vs.-all on Binary Logistic Regression

2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class Logistic

Regression
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Multi-Class Prediction

4 5 6 7 8

sepal length (cm)

2.0
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3.0

3.5

4.0

4.5
se

p
a
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w
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I. setosa

I. versicolor

I. virginica

1. Learn P(setosa (class 1)) = F(Xθ1)

2. P(versicolor (class 2)) = F(Xθ2)

3. P(virginica (class 3)) = F(Xθ3)

4. Goal: Learn θi∀i ∈ {1, 2, 3}
5. Question: What could be an F?
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Multi-Class Prediction
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1. Question: What could be an F?

2. Property:
∑3

i=1F(Xθi ) = 1

3. Also F(z) ∈ [0, 1]

4. Also, F(z) has squashing proprties: R 7→ [0, 1]
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Multi-Class Prediction
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Softmax

Z ∈ Rd

F(zi ) =
ezi∑d
i=1 e

zi

∴
∑

F(zi ) = 1

F(zi ) refers to probability of class i
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Softmax for Multi-Class Logistic Regression

k = {1, . . . ,K}classes

θ =


...

...
...

...

θ1 θ2 · · · θK
...

...
...

...


ŷk = P(y = k |X , θ) = eXθk∑K

k=1 e
XθK
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

P(y = k |X , θ) =
eXθk∑K
k=1 e

Xθk

P(y = 0|X , θ) =
eXθ0

eXθ0 + eXθ1

P(y = 1|X , θ) =
eXθ1

eXθ0 + eXθ1
=

eXθ1

eXθ1{1 + eX (θ0−θ1)}

=
1

1 + e−Xθ′

= Sigmoid!
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

i th point is:

ŷi =

0.10.8

0.1

 =

ŷ1iŷ2i
ŷ3i



yi =

01
0

 =

y1iy2i
y3i


meaning the true class is Class #2

Let us calculate −
∑3

k=1 y
k
i log ŷki

= −(0× log(0.1) + 1× log(0.8) + 0× log(0.1))

Tends to zero
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ŷ1iŷ2i
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

i th point is:

ŷi =

0.30.4

0.3

 =

ŷ1iŷ2i
ŷ3i



yi =

01
0

 =

y1iy2i
y3i


meaning the true class is Class #2

Let us calculate −
∑3

k=1 y
k
i log ŷki

= −(0× log(0.1) + 1× log(0.4) + 0× log(0.1))

High number! Huge penalty for misclassification!
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Multi-Class Logistic Regression Cost

For 2 class we had:

J(θ) = −
{ n∑

i=1

yi log(σθ(xi )) + (1− yi ) log(1− σθ(xi ))

}

More generally,

J(θ) = −
{ n∑

i=1

yi log(ŷi ) + (1− yi ) log(1− ŷi )

}

Extend to K-class:

J(θ) = −
{ n∑

i=1

K∑
k=1

yki log(ŷki )

}
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Multi-Class Logistic Regression Cost Gradient

J(θ) = −
{ n∑

i=1

K∑
k=1

yki log(ŷki )

}

∇θkJ(θ) =
N∑
i=1

(ŷki − yki )xi
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Hessian Matrix

The Hessian matrix of f(.) with respect to θ, written ∇2
θf (θ) or

simply as H, is the d × d matrix of partial derivatives,

∇2
θf (θ) =



∂2f (θ)
∂θ21

∂2f (θ)
∂θ1∂θ2

. . . ∂2f (θ)
∂θ1∂θn

∂2f (θ)
∂θ2∂θ1

∂2f (θ)
∂θ22

. . . ∂2f (θ)
∂θ2∂θn

. . . . . . . . . . . .

. . . . . . . . . . . .
∂2f (θ)
∂θn∂θ1

∂2f (θ)
∂θn∂θ2

. . . ∂2f (θ)
∂θ2n
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Newton’s Algorithm

The most basic second-order optimization algorithm is Newton’s

algorithm, which consists of updates of the form,

θk+1 = θk −H1
kgk

where gk is the gradient at step k . This algorithm is derived by

making a second-order Taylor series approximation of f (θ) around

θk :

fquad(θ) = f (θk) + gT
k (θ − θk) +

1

2
(θ − θk)

THk(θ − θk)

differentiating and equating to zero to solve for θk+1.
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Learning Parameters

Now assume:

g(θ) =
n∑

i=1

[
σθ(xi )− yi

]
x ji = XT(σθ(X)− y)

πi = σθ(xi )

Let H represent the Hessian of J(θ)

H =
∂

∂θ
g(θ) =

∂

∂θ

n∑
i=1

[
σθ(xi )− yi

]
x ji

=
n∑

i=1

[
∂

∂θ
σθ(xi )x

j
i −

∂

∂θ
yix

j
i

]

=
n∑

i=1

σθ(xi )(1− σθ(xi ))xix
T
i

= XTdiag(σθ(xi )(1− σθ(xi )))X
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Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian

of the negative log-likelihood are given by:

g(θ)k = XT(πk − y)

Hk = XTSkX

Sk = diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)

The Newton update at iteraion k + 1 for this model is as follows:

θk+1 = θk −H−1gk

= θk + (XTSkX )−1XT (y − πk)

= (XTSkX )−1[(XTSkX )θk + XT (y − πk)]

= (XTSkX )−1XT [SkXθk + y − πk ]
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Regularized Logistic Regression

Unregularised:

J1(θ) = −
{ n∑

i=1

yi log(σθ(xi )) + (1− yi ) log(1− σθ(xi ))

}
L2 Regularization:

J(θ) = J1(θ) + λθT θ

L1 Regularization:

J(θ) = J1(θ) + λ|θ|
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