ES 335: Machine Learning
August 2025 • IIT Gandhinagar
Welcome to ES 335: Machine Learning
Join our Slack workspace for course announcements and discussions
Instructor: Prof. Nipun Batra
Email: nipun.batra@iitgn.ac.in
Office: 13/401C
Directions to office
Venue: Room 10/103
Teaching Assistants:
- Palak Gupta (palak.gupta@iitgn.ac.in)
- Abhyudaya Nair (abhyudaya.nair@iitgn.ac.in)
- Dekka Muni Kumar (muni.kumar@iitgn.ac.in)
- Diya Ashvinsinh Thakor (diya.thakor@iitgn.ac.in)
- Vinayak Rana (vinayak.rana@iitgn.ac.in)
- Rishabh Mondal (rishabh.mondal@iitgn.ac.in)
- Ayush Shrivastava (shrivastavaayush@iitgn.ac.in)
- Kaloori Shiva Prasad (kaloori.shiva@iitgn.ac.in)
- Suruchi Hardaha (suruchi.hardaha@iitgn.ac.in)
- Prathamesh Shanbhag (prathamesh.shanbhag@iitgn.ac.in)
- Aditya Mehta (aditya.mehta@iitgn.ac.in)
- Guntas Singh Saran (guntassingh.saran@iitgn.ac.in)
- Neerja Kasture (neerja.kasture@iitgn.ac.in)
- Akash Gupta (akash.gupta@iitgn.ac.in)
- Umang Shikarvar (umang.shikarvar@iitgn.ac.in)
- Venkatakrishnan E (venkatakrishnan.e@iitgn.ac.in)
The prerequisite exam must be submitted by August 10th, 2025 at 10:00 PM.
- The exam is open book and open internet
- Submission instructions are provided within the exam
- Mandatory for course enrollment
Prerequisites
Required Knowledge:
- Python Programming - Good experience with data structures and algorithms
- Probability & Statistics - Basic concepts and distributions
- Linear Algebra - Vectors, matrices, and operations
- Calculus - Derivatives and basic optimization
Preparation Materials
To refresh your understanding before the course begins:
Reference Textbooks
Primary References:
Mathematics for Machine Learning - Deisenroth, Faisal, Ong • Free PDF
An Introduction to Statistical Learning - James, Witten, Hastie, Tibshirani • Free Online
Pattern Recognition and Machine Learning - Christopher Bishop • Free PDF
Additional References:
The Elements of Statistical Learning - Friedman, Hastie, Tibshirani • Free PDF
Deep Learning - Goodfellow, Bengio, Courville • Free Online
Pattern Classification - Duda, Hart, Stork
Machine Learning - Tom Mitchell
Machine Learning: A Probabilistic Perspective - Kevin Murphy
Additional Learning Resources
Online Courses:
- NPTEL Machine Learning - Balaram Ravindran
- CMU Machine Learning - Mitchell & Balcan
- Coursera ML Course - Andrew Ng
- Fast.ai Machine Learning
- Fast.ai Deep Learning
- UCI Machine Learning - Alex Ihler