ES335 Logo
  • Home
  • Schedule
  • Grading
  • FAQ
  • Deadlines
  • Instructor

ES 335: Machine Learning

August 2025 • IIT Gandhinagar

Welcome to ES 335: Machine Learning

Join our Slack workspace for course announcements and discussions

Course Information

Instructor: Prof. Nipun Batra
Email: nipun.batra@iitgn.ac.in
Office: 13/401C
Directions to office

Venue: Room 10/103

Teaching Assistants:

  • Palak Gupta (palak.gupta@iitgn.ac.in)
  • Abhyudaya Nair (abhyudaya.nair@iitgn.ac.in)
  • Dekka Muni Kumar (muni.kumar@iitgn.ac.in)
  • Diya Ashvinsinh Thakor (diya.thakor@iitgn.ac.in)
  • Vinayak Rana (vinayak.rana@iitgn.ac.in)
  • Rishabh Mondal (rishabh.mondal@iitgn.ac.in)
  • Ayush Shrivastava (shrivastavaayush@iitgn.ac.in)
  • Kaloori Shiva Prasad (kaloori.shiva@iitgn.ac.in)
  • Suruchi Hardaha (suruchi.hardaha@iitgn.ac.in)
  • Prathamesh Shanbhag (prathamesh.shanbhag@iitgn.ac.in)
  • Aditya Mehta (aditya.mehta@iitgn.ac.in)
  • Guntas Singh Saran (guntassingh.saran@iitgn.ac.in)
  • Neerja Kasture (neerja.kasture@iitgn.ac.in)
  • Akash Gupta (akash.gupta@iitgn.ac.in)
  • Umang Shikarvar (umang.shikarvar@iitgn.ac.in)
  • Venkatakrishnan E (venkatakrishnan.e@iitgn.ac.in)
Prerequisite Exam

The prerequisite exam must be submitted by August 10th, 2025 at 10:00 PM.

  • The exam is open book and open internet
  • Submission instructions are provided within the exam
  • Mandatory for course enrollment

Prerequisites

Required Knowledge:

  • Python Programming - Good experience with data structures and algorithms
  • Probability & Statistics - Basic concepts and distributions
  • Linear Algebra - Vectors, matrices, and operations
  • Calculus - Derivatives and basic optimization

Preparation Materials

To refresh your understanding before the course begins:

  • Python Data Science Handbook (Chapters 1-4)
  • Linear Algebra for Machine Learning
  • Khan Academy: Statistics and Probability
  • Mathematics for Machine Learning (Free PDF)

Reference Textbooks

Primary References:

  1. Mathematics for Machine Learning - Deisenroth, Faisal, Ong • Free PDF

  2. An Introduction to Statistical Learning - James, Witten, Hastie, Tibshirani • Free Online

  3. Pattern Recognition and Machine Learning - Christopher Bishop • Free PDF

Additional References:

  1. The Elements of Statistical Learning - Friedman, Hastie, Tibshirani • Free PDF

  2. Deep Learning - Goodfellow, Bengio, Courville • Free Online

  3. Pattern Classification - Duda, Hart, Stork

  4. Machine Learning - Tom Mitchell

  5. Machine Learning: A Probabilistic Perspective - Kevin Murphy

Additional Learning Resources

Online Courses:

  • NPTEL Machine Learning - Balaram Ravindran
  • CMU Machine Learning - Mitchell & Balcan
  • Coursera ML Course - Andrew Ng
  • Fast.ai Machine Learning
  • Fast.ai Deep Learning
  • UCI Machine Learning - Alex Ihler

ES335: Machine Learning • IIT Gandhinagar • August 2025

© 2025 Nipun Batra

Made with Quarto • Prof. Nipun Batra