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Questions

1. (2 points) Write and explain the formula for feature importance of Xth
j feature for random forests when using M trees.

The total number of samples fed to the model is N .

Solution: For any feature Xj in a Random Forest with M trees:

Importance(Xj) =
1

M

M∑
m=1

∑
t∈φm

1(jt = j) · p(t) ·∆i(t)

Where:

• M = number of trees in the forest

• φm = set of all nodes in tree m

• 1(jt = j) = indicator function (1 if node t uses feature Xj , 0 otherwise)

• p(t) = Nt

N = proportion of samples at node t

• ∆i(t) = impurity reduction at node t

2. (1 point) How does a decision tree’s bias and variance vary with increasing depth. Explain.

Solution: As decision tree depth increases:

• Bias decreases: Deeper trees can capture more complex patterns, reducing underfitting

• Variance increases: Deeper trees become more sensitive to training data changes, leading to overfitting

This creates the classic bias-variance trade-off - shallow trees have high bias/low variance, while deep trees have low
bias/high variance.

3. For each model below and the common dataset (x, y) = {(1, 6), (2, 3), (4, 1.5)}:

1. Write the squared loss J(·) in terms of xi, yi, a, b.
2. Find the estimator(s) (a, b) using either the normal equation or first principles.

(a) (2 points) Model: yi =
a

xi
, xi > 0.

(b) (2 points) Model: yi = a− xi.

(c) (2 points) Model: yi = a+
xi

b
.

Solution:

(a) yi =
a

xi

J(a) =

n∑
i=1

(
yi −

a

xi

)2

,
dJ

da
= −2

n∑
i=1

( yi
xi

− a

x2
i

)
= 0 ⇒ â =

∑
i
yi

xi∑
i

1
x2
i

.

With data (1, 6), (2, 3), (4, 1.5):∑
yi

xi
= 6 + 3

2 + 3
8 = 63

8 ,
∑

1
x2
i
= 1 + 1

4 + 1
16 = 21

16 ⇒ â = 6 .

(b) yi = a− xi

J(a) =

n∑
i=1

(yi − a+ xi)
2,

dJ

da
= −2

n∑
i=1

(yi − a+ xi) = 0 ⇒ â =
1

n

n∑
i=1

(yi + xi) .

With data: ∑
(yi + xi) = 7 + 5 + 5.5 = 35

2 , n = 3 ⇒ â = 35
6 ≈ 5.8333 .



(c) yi = a+
xi

b
(two parameters)

J(a, b) =

n∑
i=1

(
yi − a− xi

b

)2

.

Let c = 1
b so yi = a+ cxi (linear in (a, c)). Normal equations for intercept–slope regression:

ĉ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
, â = ȳ − ĉ x̄, b̂ =

1

ĉ
.

With data x = {1, 2, 4}, y = {6, 3, 1.5}:

x̄ = 7
3 , ȳ = 7

2 , Sxx = 14
3 , Sxy = − 13

2 .

Hence

ĉ =
Sxy

Sxx
=

− 13
2

14
3

= − 39
28 , â = ȳ − ĉ x̄ = 189

28 = 6.75, b̂ =
1

ĉ
= − 28

39 ≈ −0.718 .

4. (2 points) Show, from a geometric perspective, that the normal equation

X⊤X θ = X⊤y

arises by requiring the residual vector
r = y −Xθ

to be orthogonal to the span of the columns of X.

Solution: From a geometric perspective, the goal of linear regression is to find a prediction vector, ŷ = Xθ, that lies
within the span of the columns of the feature matrix X and is as close as possible to the actual target vector y.
This is equivalent to minimizing the length of the residual vector r = y − ŷ
This implies:

1. The vector ŷ in the span of the columns of X that is closest to y is the orthogonal projection of y onto that
span.

2. For this to be true, the residual vector, r = y − ŷ, must be orthogonal to the span of the columns of X.

3. This means the residual vector must be orthogonal to every column vector xj of the matrix X. Mathematically,
this orthogonality is expressed using the dot product:

x⊤
j (y − ŷ) = 0 for all columns j

4. We can express this condition for all columns simultaneously using the matrix transpose X⊤:

X⊤(y − ŷ) = 0

5. Substituting the definition of our prediction, ŷ = Xθ, gives:

X⊤(y −Xθ) = 0

6. Distributing X⊤ and rearranging the terms leads directly to the normal equation:

X⊤X θ = X⊤y

5. (a) (1 point) Define k-fold cross-validation and leave-one-out cross-validation (LOOCV).

(b) (11/2 points) Suppose n = 100. Assume that training a model on m points costs time am, and testing on m points
costs bm, where a, b > 0 are constants.

1. Derive the total computational cost of 5-fold CV.
2. Derive the total computational cost of LOOCV.
3. Compare the two costs numerically when n = 100, a = 1, and b = 0.1.

Solution:
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(a) In k-fold CV, the dataset is split into k equal parts. Each part is used once as test data, while the other k − 1
parts form the training set. In LOOCV, each single data point serves as test once, with the remaining n − 1
points used for training.

(b) 1. 5-fold CV: Each training set has 80 points. Training cost: a ·80, testing cost: b ·20. Total: 5(a ·80+ b ·20) =
400a+ 100b.

2. LOOCV: Each iteration trains on 99 points, tests on 1 point. Cost per iteration: a · 99 + b · 1. Total:
100(a · 99 + b · 1) = 9900a+ 100b.

3. With a = 1, b = 0.1: - 5-fold CV: 400 + 10 = 410. - LOOCV: 9900 + 10 = 9910. Ratio ≈ 24.2. Hence
LOOCV is far more expensive.

6. (a) (11/2 points) For a binary class node with class-1 proportion p ∈ [0, 1], the Gini impurity is

G(p) = 1− (p2 + (1− p)2).

(i) Find the p that maximizes it. Ensure you also test via the double derivative test. (ii) Report Gmax.
(b) (1 point) Dataset (single feature X, binary label Y ):

(1, 0), (2, 0), (3, 1), (4, 1), (5, 1).

(i) Compute the root-node Gini. (ii) Compute the weighted Gini for splits at X = 2.5 and at X = 3.5. Which split
would a decision tree algorithm using Gini index choose? Justify.

Solution:

(a) Binary Gini

G(p) = 1−
(
p2 + (1− p)2

)
= 2p(1− p), G′(p) = 2(1− 2p), G′′(p) = −4 < 0.

Set G′(p) = 0 ⇒ p = 1
2 (unique maximizer). Thus

Gmax = G
(
1
2

)
= 2 · 1

2 · 1
2 = 1

2 .

(b) Numerical split selection Root counts: (Y = 1, Y = 0) = (3, 2), so

Groot = 1−
(

3
5

)2

−
(

2
5

)2

= 12
25 = 0.48.

Split at X = 2.5: Left (1, 2) : (0, 0) ⇒ GL = 0, Right (3, 4, 5) : (1, 1, 1) ⇒ GR = 0. Weighted = 2
5 · 0 + 3

5 · 0 = 0.

Split at X = 3.5: Left (1, 2, 3) : (0, 0, 1) gives

GL = 1−
(

2
3

)2

−
(

1
3

)2

= 4
9 ,

Right (4, 5) : (1, 1) gives GR = 0. Weighted = 3
5 · 4

9 + 2
5 · 0 = 4

15 ≈ 0.2667.

Choice: CART picks the split with smaller weighted impurity ⇒ X = 2.5 (perfect purity).

7. (1 point) In polynomial regression, we fit
y ≈ θ0 + θ1x+ · · ·+ θdx

d.

Briefly state how increasing the degree d affects bias and variance of the model.

Solution: As polynomial degree d increases:

• Bias decreases: Higher degree polynomials can fit more complex, non-linear relationships, reducing underfit-
ting

• Variance increases: Model becomes more sensitive to training data fluctuations, leading to overfitting risk

Classic bias-variance trade-off - low degree has high bias/low variance, high degree has low bias/high variance.

8. (1 point) You are developing a medical device that detects snoring in 10-second windows during sleep. On test data, your
model achieves 90% accuracy.
Would you recommend releasing the device based on this result alone? List at least two important factors that should
be considered before deployment, and explain why they matter.
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Solution: Open-ended; possible factors include:

• Baseline performance: if snores are rare (class imbalance), 90% accuracy may not be better than always
predicting “No Snore.”

• Alternative metrics: sensitivity/specificity, precision–recall, F1, balanced accuracy provide more insight than
raw accuracy.

• Costs of errors: false negatives (missed snores) vs. false positives (false alarms) have different medical
implications.

• Clinical validation: real-world testing with diverse patients is needed before deployment.

Any two or more well-argued points earn full credit.
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