‘Total time: 70 mins Total marks: 18 Name and Roll Number:

Questions

1. (2 points) Write and explain the formula for feature importance of X;h feature for random forests when using M trees.
The total number of samples fed to the model is V.

Solution: For any feature X; in a Random Forest with M trees:
M
Importance(X;) = i mz:ltg; 1(j = 7) - p(t) - Ai(t)

Where:

e M = number of trees in the forest
e ¢, = set of all nodes in tree m
e 1(j; = j) = indicator function (1 if node ¢ uses feature X;, 0 otherwise)

p(t) = 4t = proportion of samples at node ¢

Ai(t) = impurity reduction at node ¢

2. (1 point) How does a decision tree’s bias and variance vary with increasing depth. Explain.

Solution: As decision tree depth increases:

e Bias decreases: Deeper trees can capture more complex patterns, reducing underfitting

e Variance increases: Deeper trees become more sensitive to training data changes, leading to overfitting

This creates the classic bias-variance trade-off - shallow trees have high bias/low variance, while deep trees have low
bias/high variance.

3. For each model below and the common dataset (z,y) = {(1,6),(2,3), (4,1.5) }:

1. Write the squared loss J(-) in terms of z;,y;, a, b.

2. Find the estimator(s) (a,b) using either the normal equation or first principles.

(a) (2 points) Model: y; = g, x; > 0.
T
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(b) (2 points) Model: y; = a — ;.
(¢) (2 points) Model: y; = a + %
Solution:
a
(a) yi = -
n n Yi
aN? dJ Yi a . Zi?
= P — — s _— = —2 (— — —) = = 2
J(a) Z(y xl> da Z x;  x? 0=a P~
=1 1 vz
With data (1,6), (2,3), (4, 1.5):
D E=6+5+5=% Y F=l+itp=%K=>[a=6]
(b) yi=a—x;
J(Q)Zi(yl—a+xi)27 ﬂ:_2i(yz a+$z)—0:> &:l n(yi'"xz)
=1 da i=1 n =1
With data:
S itz)=T+5+55=2 n=3=|a=32~58333|




(€) yi=a+ i (two parameters)

b
J(a,b) = Z (yZ —a— %)2
i=1

Let ¢ = ¢ so y; = a + cx; (linear in (a,c)). Normal equations for intercept-slope regression:

. _ 7 .3 N 1
ézz(l‘l J")(y_l y)’ &:g_éi" b:T
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With data z = {1,2,4}, y = {6,3,1.5}:
'/i:%a §=%7 Szw:%; Swy—_LQS
Hence .
Se -5 . . ~ 1
é:Sszf -2, a=y-cx=1=6.75, b:g:—%m—o.ﬂ&
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4. (2 points) Show, from a geometric perspective, that the normal equation
XTX0=XTy

arises by requiring the residual vector
r=y—X¢

to be orthogonal to the span of the columns of X.

Solution: From a geometric perspective, the goal of linear regression is to find a prediction vector, y = X6, that lies
within the span of the columns of the feature matrix X and is as close as possible to the actual target vector y.
This is equivalent to minimizing the length of the residual vectorr =y — y

This implies:

1. The vector ¥ in the span of the columns of X that is closest to y is the orthogonal projection of y onto that
span.

2. For this to be true, the residual vector, r = y — y, must be orthogonal to the span of the columns of X.

3. This means the residual vector must be orthogonal to every column vector x; of the matrix X. Mathematically,
this orthogonality is expressed using the dot product:

x;-r (y—y)=0 for all columns j
4. We can express this condition for all columns simultaneously using the matrix transpose X :
X'(y-9)=0
5. Substituting the definition of our prediction, y = X8, gives:
X' (y—-X6)=0
6. Distributing X T and rearranging the terms leads directly to the normal equation:

X'X0=X"y

5. (a) (1 point) Define k-fold cross-validation and leave-one-out cross-validation (LOOCV).

(b) (1Y points) Suppose n = 100. Assume that training a model on m points costs time am, and testing on m points
costs bm, where a,b > 0 are constants.

1. Derive the total computational cost of 5-fold CV.
2. Derive the total computational cost of LOOCV.
3. Compare the two costs numerically when n = 100, a = 1, and b = 0.1.

Solution:




a) In k-fo , the dataset is split into k equal parts. Each part is used once as test data, while the other k —
In k-fold CV, the dataset is split i k 1 parts. Each part i d test dat hile the other k — 1
parts form the training set. In LOOCYV, each single data point serves as test once, with the remaining n — 1

points used for training.

(b) 1. 5-fold CV: Each training set has 80 points. Training cost: a-80, testing cost: b-20. Total: 5(a-80+b-20) =
400a + 1000.
2. LOOCV: Each iteration trains on 99 points, tests on 1 point. Cost per iteration: a-99 + b - 1. Total:
100(a- 99 + b - 1) = 9900a + 100b.
3. With @ = 1, b = 0.1: - 5-fold CV: 400 + 10 = 410. - LOOCV: 9900 + 10 = 9910. Ratio ~ 24.2. Hence
LOOCYV is far more expensive.

6. (a) (1% points) For a binary class node with class-1 proportion p € [0, 1], the Gini impurity is
Gp)=1-@*+(1-p)?).
(i) Find the p that maximizes it. Ensure you also test via the double derivative test. (ii) Report Gmax-
(b) (1 point) Dataset (single feature X, binary label Y):
(1,0), (2,0), (3,1), (4,1), (5,1).

(i) Compute the root-node Gini. (ii) Compute the weighted Gini for splits at X = 2.5 and at X = 3.5. Which split
would a decision tree algorithm using Gini index choose? Justify.

Solution:

(a) Binary Gini
Gp)=1-(@P"+1-p?) =2p(1—-p), G'(p)=2(1-2p), G'(p)=-4<0.

Set G'(p) =0 = p =1 (unique maximizer). Thus

G =G(3) =234 = 4

=

(b) Numerical split selection Root counts: (Y =1,Y =0) = (3,2), so
3)? 2
Groot =1- (g) - (g

Split at X = 2.5: Left (1,2) : (0,0) = G, = 0, Right (3,4,5) : (1,1,1) = G = 0. Weighted = 2 -0+
Split at X = 3.5: Left (1,2,3) : (0,0,1) gives
)2

2
w13
Right (4,5) : (1,1) gives Gg = 0. Weighted = 2 - § + 2 -0 = 1+ ~ 0.2667.
Choice: CART picks the split with smaller weighted impurity = X = 2.5 (perfect purity).

2 12
) =i =08

alw
)
|
)

)

Wl
Ol

7. (1 point) In polynomial regression, we fit
Yy~ 04601z + -+ gz

Briefly state how increasing the degree d affects bias and variance of the model.

Solution: As polynomial degree d increases:

e Bias decreases: Higher degree polynomials can fit more complex, non-linear relationships, reducing underfit-
ting

e Variance increases: Model becomes more sensitive to training data fluctuations, leading to overfitting risk

Classic bias-variance trade-off - low degree has high bias/low variance, high degree has low bias/high variance.

8. (1 point) You are developing a medical device that detects snoring in 10-second windows during sleep. On test data, your
model achieves 90% accuracy.
Would you recommend releasing the device based on this result alone? List at least two important factors that should
be considered before deployment, and explain why they matter.



Solution: Open-ended; possible factors include:

e Baseline performance: if snores are rare (class imbalance), 90% accuracy may not be better than always
predicting “No Snore.”

e Alternative metrics: sensitivity/specificity, precision—recall, F1, balanced accuracy provide more insight than
raw accuracy.

e Costs of errors: false negatives (missed snores) vs. false positives (false alarms) have different medical
implications.

e Clinical validation: real-world testing with diverse patients is needed before deployment.

Any two or more well-argued points earn full credit.




