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Questions

1. (3 points) Compute the £y, ¢1, {2, and £, norms of the vector
x =10,1,0,2,3].

Which norm is most suitable for measuring sparsity, and which for measuring small parameter vectors?

Solution: For x =[0,1,0,2,3]:
[xllo = #{i: x; # 0} =3,

Ixly = |zl =1+2+3 =6,

Ixl2 = V12 + 22 + 32 = V14

I%||co = max |z;| = 3.

e /y measures the count of nonzero entries = best for enforcing sparsity.

e (., measures the largest component = controls the worst-case magnitude.

{1 promotes sparsity but is convex = easier to optimize than £.

{5 encourages small values across all coordinates, giving smooth solutions.

2. (4 points) Stochastic gradient descent (SGD) as an unbiased estimator.
(a) Prove that SGD is an unbiased estimator of the true gradient in supervised learning with squared loss.
(b) (Empirical check) Consider dataset D = {(x;,y;)}?_; with

(Il,yl) = (1a2)7 (Jig,yg) = (273)5 ($37y3) = (374)

We use squared loss £;(0) = % (y; —x;60)* with scalar parameter §. Compute the full gradient V.J(#) and the individual
gradients V/;(#). Show that the expectation of a stochastic gradient step equals the batch gradient.

Solution:

(a) Dataset D = {(zy,y:)} Y, squared loss:

Full empirical risk:

N N
D 6(0), VIO) =+ VL)
i=1 i=1
SGD samples ¢ uniformly and computes g;(0) = V¢;(6). Expectation:
N
=% > V() = V.J(©0).
1=1

Thus SGD is an unbiased estimator of the true gradient.

(b) For one point:
V&(G) = —.Z’i(yi - 5619) = 1‘?9 — XY;-

Individual gradients:
Vi (0)=60—2, Viy(0) =40 -6, Vi3(0)=90—12.

Full gradient:

3
0) = 3> (270 — wiy;) = 3(146 — 20).

i=1

Expectation of SGD step:
E[V£;(0)] = 1((0 —2) + (46 — 6) + (90 — 12)) = 1 (146 — 20).

Same as full gradient. Empirical check confirms unbiasedness.




3. (3 points) Constrained gradient descent. We want to optimize a scalar parameter 6 under the box constraint 6 € [—1, 1].
One idea is to introduce an unconstrained parameter ¢ € R and map it to 6 using a smooth function so that 6 always lies
in [-1,1].

(

a) Propose a suitable mapping from ¢ to 6 using the sigmoid function.
(b) Using this mapping, derive the gradient of the loss J(0) w.r.t. ¢.
)

(c) Write down the explicit gradient descent update rule for ¢(*+1) with learning rate 7.

Solution:
(a) A valid choice:

This ensures 6 € (—1,1).
(b) Chain rule:

97 _0J 0
o6 00 09

00

9 20(o)(1 — a(9)).

(c) Update rule:
o — ) (55 2001 = a6 )

Then recover
a(kr"rl) — 20_(¢(k+1)) _ 1

4. (4 points) Focal Loss vs. Logistic Regression. In binary logistic regression, the cross-entropy (log loss) for a data point
with label y € {0,1} and predicted probability p € (0, 1) is

ler(py) = —(ylogp + (1 —y)log(1 — p)).
The focal loss modifies this as

P ify=1,

ler(p,y) = — (1 —p;) 7" log(p:), where p; = .
1—p ify=0,

with tuning parameter + > 0.

Definitions:

e An easy example is one that the model predicts with high confidence, e.g. p; =~ 1.
e A hard example is one with low confidence, e.g. p; < 1.
(a) Show that when v = 0, focal loss reduces to the usual cross-entropy.
(b) For v > 0, explain mathematically how the factor (1 — p;)” changes the loss for easy vs. hard examples.
) Suppose y =1, p = 0.99. Compute CE loss and focal loss with v = 2.
)

(c

(d) Sketch log(p:) and lpr(p:) for v = 2 as a function of p; € [0, 1], and briefly explain the difference.

Solution:
(a) If y =0, then (1 —p;)°=1. So
trL(p,y) = —log(p:) = Ler(p, y)-

(b) For v > 0: - Easy examples: p; = 1 = (1 — p;)? =~ 0 = loss is down-weighted. - Hard examples: p; < 1 =
(1 —py)7 =~ 1 = loss is nearly unchanged. Thus focal loss emphasizes hard misclassified points.

(c)y =1,p =099 - CE: fcg = —10g(0.99) ~ 0.01005. - FL with v = 2: factor (1 — 0.99)%> = 0.0001, so
lpr, ~ 0.0001 x 0.01005 = 1.0 x 1076,

(d) Sketch: - CE loss ¢cg(p:) = —log(p:) decreases smoothly from oo at p; = 0 to 0 at p, = 1. - FL loss for v = 2 has
the same shape but is strongly suppressed near p; ~ 1, staying close to zero for easy examples. Interpretation:
Focal loss reduces the effect of correctly classified points and focuses on misclassified ones.




u9 (%)
and observed ratings
)
-

(a) Write the squared loss over observed entries.
oJ oJ oJ JdJ
(b)

Derive —, —, —, —.
v 8’&1 6’01 8u2 8112
(¢) With learning rate n = 0.1 and initialization

Uy = 0.8, v = 1.1,

5. (4 points) Matrix Factorization for Movie Recommendation Assume rank k& = 1 with

U1V
U2V

UVT — |: UIUZ:|

U202

Ug = 1.3, Vo = 0.97

compute one simultaneous gradient descent update for (u, vy, us,v2).

(d) Compute the loss before and after the update. Has it decreased?

Solution:
(a) Loss:

DN | =

J(u1,uz,v1,v2) =

(b) Let e11 =5 — uqv1, eaa =4 — ugvy. Then

oJ
o = —(5 —ujv)v; = —eqqvy,
oJ
Tug = 7(4 — UQ”UQ)UQ = —€92202,

(¢) Numerical step (simultaneous GD): first
e11 =5 — (0.8)(1.1) = 4.12,

Gradients:
Oy, J = —4.12-1.1 = —4.532,

OuyJ = —2.83-0.9 = —2.547,

Updates (27 =2 —nd,J):
ul = 0.8 —0.1(—4.532) = 1.2532,
uj = 1.3 —0.1(—2.547) = 1.5547,

(d) Loss before:

Loss after (using updated values):

Yes, the loss decreased (from = 12.49 to ~ 7.21).

Jagter = 5 [(5 — 1.2532 - 1.4296) +

[(5 —uv)? + (4 — uQvg)Z]

aJ

o1 —(5 —uvi)ur = —eqyuy,
aJ
87’[}2 = 7(4 — UQUQ)UQ = —€22U2.

€2y =4 — (1.3)(0.9) = 2.83.

Oy, J = —4.12-0.8 = —3.296,
Oy, J = —2.83 - 1.3 = —3.679.

vi =1.1-0.1(—3.296) = 1.4296,

vf = 0.9 —0.1(—3.679) = 1.2679.

Jbetore = 5[(5—0.8-1.1)% + (4 — 1.3 0.9)*] = $[4.12% + 2.83%] ~ 12.49165.

(4 — 1.5547 - 1.2679)*] ~ 7.2050.




