
Total time: 90 mins Total marks: 18 Name and Roll Number:

Questions

1. (1 point) In principle, gradients can be estimated numerically via finite differences:

∂J

∂θi
≈ J(θi + ϵ)− J(θi − ϵ)

2ϵ
.

However, modern deep learning frameworks instead use automatic differentiation (autograd).

List and briefly explain two reasons why finite differences are not preferred in modern neural networks.

Solution:

• Computational cost: Finite differences require at least two forward passes per parameter. For millions of
parameters, this becomes prohibitively slow. Autograd computes all gradients in roughly the same time as a
few forward passes (via backprop).

• Numerical instability: Choice of ϵ affects accuracy — too large ⇒ poor approximation, too small ⇒ floating-
point cancellation errors. Autograd yields exact (up to machine precision) derivatives via the chain rule.

2. (3 points) Second-order update in Linear Regression. Consider the mean squared loss for linear regression:

J(θ) =
1

2N
∥y −Xθ∥22,

where J(θ) is the objective function, ∇J(θ) denotes its gradient vector, and H = ∇2
θJ(θ) denotes its Hessian matrix

(matrix of second partial derivatives).

Suppose we perform a single second-order (Newton) update:

θnew = θold −H−1∇J(θold).

(a) Compute ∇J(θ) and H for this loss.

(b) Show what θnew becomes after one Newton step (simplify fully).

(c) Explain why this result is interesting: what happens regardless of the initial θold? Why doesn’t this generalize to
deep networks?

Solution:

(a)

∇J(θ) = − 1

N
X⊤(y −Xθ), H =

1

N
X⊤X.

(b) Substitute into the Newton update:

θnew = θold − (X⊤X)−1
(
−X⊤(y −Xθold)

)
= (X⊤X)−1X⊤y.

Thus, one Newton step lands exactly at the normal equation solution — in a single step.

(c) This happens because the loss is a convex quadratic, and H is constant. In deep networks, H depends on θ and
the loss is non-quadratic, so Newton’s method no longer reaches the optimum in one step.

3. (4 points) Here is a canonical example of PyTorch training and testing loop

import torch
import torch . nn as nn
import torch . optim as optim

class SimpleModel (nn . Module) :
def __init__(s e l f) :

super () . __init__ ()
s e l f . f c 1 = nn . Linear (2 , 3)
s e l f . f c 2 = nn . Linear (3 , 1)

def forward (s e l f , x) :
return s e l f . f c 2 (s e l f . f c 1 (x))

model = SimpleModel ()
c r i t e r i o n = nn .MSELoss ()
opt imize r = optim .SGD(model . parameters () , l r =0.1)

XOR da ta s e t
i nputs = torch . t en so r ([[0 . , 0 .] , [0 . , 1 .] , [1 . , 0 .] , [1 . , 1 .]])
t a r g e t s = torch . t enso r ([[0 .] , [1 .] , [1 .] , [0 .]])

for epoch in range (2 0 0) :
outputs = model (inputs)
l o s s = c r i t e r i o n (outputs , t a r g e t s)
opt imize r . zero_grad ()
l o s s . backward ()
opt imize r . s tep ()

i f epoch % 50 == 0 :
print (f "Epoch␣{epoch } , ␣Loss : ␣{ l o s s . item ()} ")

(a) What does optimizer.zero_grad() do, and why is it necessary before each backward pass?

(b) Explain the roles of loss.backward() and optimizer.step() in this code.

(c) How many trainable parameters does this model have in total?

(d) The dataset is XOR. Do you expect this model to learn it? Give a short mathematical or geometric justification.

Solution:

(a) PyTorch accumulates gradients by default. optimizer.zero_grad() clears previous gradients before computing
new ones. Without it, gradients would add up across epochs, corrupting updates.

(b) loss.backward() computes ∇θJ(θ) for all parameters using autograd. optimizer.step() updates each param-
eter based on these gradients (e.g. SGD rule).

(c)
Layer 1: 2× 3 + 3 = 9, Layer 2: 3× 1 + 1 = 4, Total: 13 parameters.

(d) No — the model is still linear overall. Composition of two linear maps is linear:

f(x) = W2(W1x+ b1) + b2 = (W2W1)x+ (W2b1 + b2).

Hence, the decision boundary is linear, and XOR is not linearly separable.

(e) Adding a nonlinearity (e.g. ReLU, sigmoid) between layers breaks this linear composition. This enables the
model to learn nonlinear decision boundaries and correctly separate XOR.

4. (3 points) Backpropagation through a simple tanh network. We define a scalar computation:

z = wx+ b, h = tanh(z), ŷ = h, L = 1
2 (y − ŷ)2.

Assume x = 2, y = 1, w = 0.5, b = 0.

(a) Prove that
d

dz
tanh(z) = 1− tanh2(z).

Hint: Start from tanh(z) =
ez − e−z

ez + e−z
and use quotient rule.

(b) Draw the computational graph.

(c) Using (a) and the local × upstream rule, compute ∂L
∂w , ∂L

∂b . Show intermediate local gradients and numerical values.

Solution:

(a) tanh′(z) = (ez+e−z)2−(ez−e−z)2

(ez+e−z)2 = 4
(ez+e−z)2 = 1−

(
ez−e−z

ez+e−z

)2

= 1− tanh2(z).

(b) Forward: z = wx+ b = 1.0, h = tanh(1) ≈ 0.7616, L = 1
2 (1− 0.7616)2 ≈ 0.0284.

Locals: ∂L
∂ŷ = −(y − ŷ) = −0.2384, ∂ŷ

∂h = 1, ∂h
∂z = 1− tanh2(z) = 1− 0.76162 = 0.4199,

∂z
∂w = x = 2, ∂z

∂b = 1.

Page 2

Chain rule:

∂L

∂w
= (−0.2384)(1)(0.4199)(2) ≈ −0.200,

∂L

∂b
= (−0.2384)(1)(0.4199)(1) ≈ −0.100.

Note: Gradients are smaller due to partial saturation of tanh at z = 1.

5. (4 points) Softmax temperature and control of diversity in next-token prediction. In next-token prediction, the model
produces logits z = [z1, . . . , zV] over a vocabulary. To convert logits into probabilities, we use the temperature-scaled
softmax:

pi(T) =
ezi/T∑
j e

zj/T
,

where T > 0 is called the temperature. Many large language models (including OpenAI’s) expose this as a user setting
temperature to influence the “creativity” of generated text.

Consider the vocabulary {a, b, c, d, e} with logits:

z = [3, 2, 1, 0, −1].

(a) Compute the probabilities pi(T) for T = 1. Which token is most likely to be generated?

(b) If we sample 10 tokens independently from this distribution, approximately how many times do we expect each token
{a, b, c, d, e} to appear?

(c) Compute pi(T) again for T = 2. Compare the results and describe what changed.

(d) Predict qualitatively what happens when T → 0 and when T →∞. Which regime produces deterministic outputs,
and which produces exploratory ones? Explain in terms of how the softmax scales the logits.

Solution:

(a) For T = 1:
e[3,2,1,0,−1] = [20.09, 7.39, 2.72, 1.00, 0.37], Z = 31.57,

p = [0.637, 0.234, 0.086, 0.032, 0.012].

Most likely token: a.

(b) Expected counts (out of 10):
a : 6.4, b : 2.3, c : 0.9, d : 0.3, e : 0.1.

(c) For T = 2:
e[1.5,1,0.5,0,−0.5] = [4.48, 2.72, 1.65, 1.00, 0.61], Z = 10.46,

p(T = 2) = [0.428, 0.260, 0.158, 0.096, 0.058].

Distribution is flatter : lower top probability, higher tail probabilities.

(d) - As T → 0, logits are divided by a very small number, amplifying their differences; softmax becomes nearly
one-hot ⇒ deterministic outputs. - As T→∞, all logits shrink toward zero, giving nearly uniform probabilities
⇒ exploratory/random outputs.

(e) The temperature parameter rescales model confidence: low T favors precise, predictable completions (high
accuracy), while high T promotes diversity and creativity by sampling from a wider range of tokens. It directly
controls the trade-off between stability and variety.

6. (1 point) Compare the gradient behaviour of the sigmoid and ReLU activations. What is the maximum gradient
magnitude achievable for sigmoid, and what is the typical gradient value for ReLU in its active region? Explain why
sigmoid networks generally learn more slowly.

Solution: Sigmoid’s gradient peaks at about 0.25 (when its output is 0.5), but becomes nearly 0 for large positive
or negative inputs due to saturation. ReLU’s gradient in its active region (z > 0) is typically 1, so it propagates
gradients more effectively. Sigmoid networks thus suffer from vanishing gradients and slower learning.

7. (1 point) Scikit-learn provides the method predict_proba() for most classifiers to output class probabilities. In logistic
regression, these probabilities come directly from the sigmoid or softmax model. How are such probabilities estimated in
a Decision Tree or Random Forest?

Page 3

Solution: Decision Trees estimate probabilities empirically — each leaf stores the proportion of training samples of
each class that reach it. For a test point, the leaf’s class fractions give the probabilities. Random Forests average
these probabilities across all trees.
In a decision tree, each leaf node represents a subset of the training data that ended up there after the tree applied
all its decision splits. Each leaf contains a distribution of class labels based on the training samples that reached it.
predict_proba() returns this empirical class distribution, normalized so the probabilities sum to 1.

For example, if a leaf has 8 training samples, with 6 belonging to class 1 and 2 to class 0:

P (y = 1 | x) = 6

8
= 0.75, P (y = 0 | x) = 2

8
= 0.25

Any new sample that lands in this leaf will get this probability vector:

predict_proba(x) = [0.25, 0.75]

predict_proba() in a Random Forest

A Random Forest is an ensemble of many decision trees T1, T2, . . . , TN . Each tree predicts its own probability dis-
tribution over the classes, just like a single DecisionTreeClassifier. The Random Forest then averages these
probabilities across all trees.

Formally, if the tth tree predicts:
P

(t)
k (x) = P (y = k | x, Tt)

then the overall forest prediction is:

P (y = k | x) = 1

N

N∑
t=1

P
(t)
k (x)

Example

Each decision tree in the forest assigns x to a leaf and computes its class probabilities.
The forest averages these:

P (y = 0 | x) = 0.2 + 0.6 + 0.0

3
= 0.2667, P (y = 1 | x) = 0.8 + 0.4 + 1.0

3
= 0.7333

So the final output is:
predict_proba(x) = [0.2667, 0.7333]

and
predict(x) = class with higher probability, here class 1.

Hard vs Soft Probabilities in Random Forests

There are two ways to compute probabilities in an ensemble of decision trees:

Hard probabilities (vote-based)

Each tree predicts a single class label (using predict()), and the proportion of trees voting for each class is used as
the estimated probability:

P (y = k | x) = Number of trees predicting class k
N

This approach treats each tree’s prediction as either 0 or 1 (a hard vote), ignoring the uncertainty within each tree.

Soft probabilities (average-based)

Instead of using class labels, we use each tree’s predict_proba output and average them:

P (y = k | x) = 1

N

N∑
t=1

P
(t)
k (x)

Here, each tree contributes a fractional belief for each class, allowing for more nuanced aggregation.

Page 4

Why soft probabilities are better

• Captures uncertainty: Trees with mixed leaves (e.g., 60% class 1, 40% class 0) contribute proportionally,
rather than voting decisively.

• Smoother and more calibrated: Averaging probabilistic outputs yields more stable and realistic probability
estimates.

• Hard and soft match only for pure leaves: If all leaves are pure (each containing samples from only one
class), both methods give identical results.

Hence, scikit-learn’s RandomForestClassifier.predict_proba() uses soft probabilities by default, as they provide
better-calibrated and more reliable estimates.

8. (1 point) We define a new metric M = Precision × Recall. For the classifier outputs below, decide which threshold
T ∈ {0.2, 0.4, 0.6, 0.8} gives the highest M .

S.No P (ŷ = 1 |xi) True label (yi)

1 0.25 0
2 0.95 1
3 0.10 0
4 0.70 1
5 0.40 0
6 0.55 1
7 0.30 0
8 0.85 1
9 0.60 0
10 0.05 0

Note that we predict positive if P (ŷ = 1|xi) ≥ T.

Solution: Compute Precision (P), Recall (R), and M = P ×R:

T P R M = P ×R
0.2 0.50 1.00 0.50
0.4 0.67 1.00 0.67
0.6 0.75 0.75 0.56
0.8 1.00 0.50 0.50

T = 0.4 yields the highest M = 0.67.

Interpretation: At T = 0.4, the balance between precision and recall is optimal under this metric. Extremely low
thresholds increase recall but hurt precision; very high thresholds do the opposite.

Page 5

