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Any major change in recent OS? 
Video: Linux , Windows



Why Study OS?
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• “Systems” bucket - important branch of CS 
• Use it everyday - Gratitude towards those who made 

our lives easier! 
• Application of DS, Algorithms 

• Heaps, Stacks,… 
• Placements?! :) 



What is an OS?
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Users

Applications

Hardware
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1. Next time I open Keynote/Adobe Reader - where does 
this presentation resume from -> Store processing and 
memory state of current program  

2. I click on Pages Icon. How does my system know I 
clicked? -> Need to interpret trackpad events 

3. Ok. System knows that Pages needs to be started -> 
where is Pages stored? 

4. Pages started -  where does the program reside now? 
5. I type something in it -> how does it show on the 

monitor? where is the data that I typed stored? What 
happens when I save it? 

6. Let’s start a C program now. Let’s write it in an editor. 
What happens if I open same file in two locations?
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1. Next time I open Keynote/Adobe Reader - where does 
this presentation resume from -> Store processing and 
memory state of current program  

2. I click on Pages Icon. How does my system know I 
clicked? -> Need to interpret trackpad events 

3. Ok. System knows that Pages needs to be started -> 
where is Pages stored? 

4. Pages started -  where does the program reside now? 
5. I type something in it -> how does it show on the 

monitor? where is the data that I typed stored? What 
happens when I save it? 

6. Let’s start a C program now. Let’s write it in an editor. 
What happens if I open same file in two locations?

OS manages running multiple programs

OS interfaces with hardware using easy interface

OS transforms programs to processes

OS manages resources - CPU, Memory, Disk, Peripherals
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Course Website has all details 
https://nipunbatra.github.io/teaching/os-fall-18/index.html
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1. Virtualisation : Physical resource (CPU, disk, 
memory) -> virtual resource
1. We saw in previous example, multiple:

1. Programs running simultaneously, each thinks 
they have CPU to themselves

2. Each thinks they have memory
2. Concurrency : Running multiple things at once 

1. Can cause problems!
3. Persistence : Store data permanently
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1. Run cpu-virtual.py
2. See the output of ps and top
3. See the activity monitor
4. OS-Fun Can you do something to make top show a 

better name than just Python3.6? Can you do it for a 
C program?
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1. Run mem.c
2. Wait why different addresses?! 

1. Address space randomisation!
2. Re-run with it disabled
3. OS-Fun: Read about ASLR - why does it make 

sense?
3. See the activity monitor
4. Run vmmap
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1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another 
and the OS -> Isolation

3. Reliability 
1. Imagine sitting in a flight and the OS crashing!
2. Or, dispensing cash in an ATM and the OS 

crashing!
3. Or, the MRI scan machine OS reboots on its own!

4. Energy efficiency (esp. for mobile systems!)


