Operating Systems
Lecture 16: swapping + Free Memory

Nipun Batra
Sep 11, 2018

SWapping

rm”“

@-A¥6 GEQTN S%w.. £

woo ygssims mmm S

opousssius

Il

m 0v80

,W,H_Dmm:.jm

Y mmm fucwiso UISpE)y 68POLO0OSY

STLLE00Z / 789409

40¢-d32089Q19852N3N
§59-N00ES-Td 897

SWapping

AN

.. .. . ‘om.‘ ﬂm.. ..mJ
...”|IJ.”_|1|.”.. naglel .. Rl iR

Hn.w_ Fm”“

@-A¥6 GEQTN S%w.. £

Auewuso ulspely 68F0L00OSY
ov80 SZLLE£00Z /289409

406-43298809952N3N
,1qSSIms §85N008S-20d 897

woo ygssims mmm S
opowssins

Swap in
Disk —> Memory

Swapping

===_===_====_=======-=-==_=..-1 J

CEARS NER
E kg

- qu“

JJJ mmm fuPulSD UlepEl 68P0L000SH
M ov80 SZLL€00Z / 289409
40¢-d3708907985TNIN

»1Igssims §55N0085-20d 897

Swap in

Swap out
Disk <— Memory

Swapping

3, 4 20 see S5 4 +
3338 L iis e

A
kg

RSY wemm Auewiag ul spey

68v0L000SY

w ov80 SZLL€00Z / 289409
. 40¢-430089079952n3N
»1Igssims §55N0085-20d 897

Swap in
Swap out

Memory as large as disk, as fast as RAM

Done well

Swapping

Swap in
Disk —> Memory

L AR ARy, @

Swap out
Disk <— Memory

—
L=
=]
-
-
=
=
=
-
-
L=
=
=
—
=t
_
=
-
-
-
-
[}
=
==
=
;-
| -
==
=
=3
==
]
-
L=
-
=
L=
-
-
-‘
-
L |
-
=
R
, -
-
)
-
- |
-
|
-
-
=
-
=
.|
-
o |
L
=3
=
—
=
-
| -
-
==
—
-
=1
==
—
==
Lt
-
-
T
;-
=3
-
=2

Done well : Memory as large as disk, as fast as RAM
Done bad : Memory as small as RAM, as slow as disk

Swapping Out

Address space

Disk

Code

Heap

TLB

10 30

23 40

40 50

50 30

Physical Memory

Swapping Out

Address space _
Disk

Code

Swap out VPN =10

Heap TLB

PFN

10 30

23 40

40 S0

- |

30

Physical Memory

Swapping Out

Address space

Disk

Swap out VPN =10

TLE

10 30

PFN

23 40

40 S0

50

30

Physical Memory

Swapping Out

Address space

Disk

Swap out VPN =10

TLB

PFN

10 30

23 40

40 S0

50 30

Physical Memory

Swapping Out

Address space

Disk

Swap out VPN =10

10

23

40

50

TLB

PFN

30

40

50

30

Physical Memory

Swapping Out

Address space

Disk

Swap out VPN =10

TLE

10 30

PFN

23 40

40 S0

50

30

Physical Memory

=
10|30|Present

Swapping Out

Address space

Disk Physical Memory

PTE

10|30|Present
I

Swap out VPN =10

TLE

10 30

PFN

23 40

40 S0

50

30

Swapping Out

Address space

Physical Memory

Disk -\

=
10|30|Present

Swap out VPN =10

TLE

10 30

PFN

23 40

40 S0

50

30

Swapping Out

Address space

Code

Disk wn

Heap

TLB

23 40

40 50

50 30

Physical Memory

PTE
10|Disk|Absent

Swapping in

Address space

Code

Heap

Disk wn

TLB

23 40

40 50

50 30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

23

40

50

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

23

40

50

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space Physical Memory

Disk s
Code PTE
10|30|Absent

LOAD VA 10

TLE

23 40

40 S0

50 30
6

Swapping in

Address space

Disk e

LOAD VA 10

T8

TLB Miss

23 40

40 50

50 30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

23

40

50

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

23

40

50

40

50

30

Physical Memory

PTE

10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

Page fault

23

40

50

PFN

40

50

30

Physical Memory

PTE

10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

Page fault

23

40

50

PFN

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

Page fault

23

40

50

PFN

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

TLB

Page fault

23

40

50

PFN

40

50

30

Physical Memory

=
10|30|Absent

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

23

40

50

TLB

Page fault

PFN

40

50

30

Physical Memory

PTE

‘ 10|30|Absent
]

Swapping in

Address space

Code

Heap

Disk

LOAD VA 10

23

40

50

TLB

Page fault

PFN

40

50

30

Physical Memory

PTE

‘ 10|90|Present
I

Swapping in

Address space

Code

Heap

Disk %

Physical Memory

PTE

‘ 10|90|Present
e —

LOAD VA 10 Page fault
TLB

PFN

10 90

23 40

40 S0

50 30

10

~age

Replacement

Replacement

Policies - Optimal

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

11

Page Replacement Policies - Optimal
Replacement

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

Optimal strategy: evict pages to be accessed furthest in future
—> Fewest possible cache misses

11

~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1

Cache size/Physical memory size: 4 pages

12

~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1

Cache size/Physical memory size: 4 pages

Strategy: evict pages based on FIFO

12

~age

C

Replacement

Policies -

O

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5

Cache size/Physical memory size: 3 pages/4 pages

ache size: 3

Cache size: 4

13

age Replacement Policies -FIFO

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4
1 Miss 1

2 Miss 2, 1
3 Miss 3,2, 1
4 Miss 4,3, 2
1 Miss 1,4, 3
2 Miss 2,1, 4
5 Miss 5,2, 1
1 Hit 5,2, 1
2 Hit 5,2, 1
3 Miss 3,5, 2
4 Miss 4,3,5
5 Hit 4,3,5

age Replacement Policies -FIFO

Workload (page): 1,2,3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4

1 Miss 1 1 Miss 1
2 WIEES 2,1 2 Miss 2, 1
3 Miss 3,2, 1 3 Miss 3,2, 1
4 Miss 4,3, 2 4 Miss 4, 3,2, 1
1 Miss 1,4, 3 1 Hit 4,3, 2, 1
2 Miss 2,1, 4 2 Hit 4,3, 2, 1
5 Miss 5,2, 1 5 Miss 54,3, 2
1 Hit 5,2, 1 1 Miss 1,5,4,2
2 Hit 5,2, 1 2 Miss 2,1,5 4
3 Miss 3,5, 2 3 Miss 3,2,1,5
4 Miss 4,3, 5 4 Miss 4, 3,2, 1
5 Hit 4, 3,5 5 Miss 54,3, 2

age Replacement Policies -FIFO
Belady's anomaly

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4

1 Miss 1 1 Miss 1
2 WIEES 2,1 2 Miss 2, 1
3 Miss 3,2, 1 3 Miss 3,2, 1
4 Miss 4,3, 2 4 Miss 4, 3,2, 1
1 Miss 1,4, 3 1 Hit 4,3, 2, 1
2 Miss 2,1, 4 2 Hit 4,3, 2, 1
5 Miss 5,2, 1 5 Miss 54,3, 2
1 Hit 5,2, 1 1 Miss 1,5,4,2
2 Hit 5,2, 1 2 Miss 2,1,5 4
3 Miss 3,5, 2 3 Miss 3,2,1,5
4 Miss 4,3, 5 4 Miss 4, 3,2, 1
5 Hit 4, 3,5 5 Miss 54,3, 2

~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 4 pages

Random

14

~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 4 pages

Random strategy: randomly evict pages

Random

14

~age

Replacement

and LU

Policies -History based (L

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

—~U

15

~age
and L

Replacement

zu>

Policies -History based (L

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

Strategy:
1. Least frequently used - evict least frequently used page
2. Least recently used - evict least recently used page

—~U

SU implementation

16

L RU Implementation

 On each access, update time of page

16

L RU Implementation

* When looking for eviction:

16

L RU Implementation

» Search for all candidate sets (millions of pages)

16

L RU Implementation

* Find least recently used

16

L RU Implementation

 Huge overhead!

16

RU implementation (Appx - Clock Hand Algo)

17

L RU implementation (Appx - Clock Hand Algo)

 On each access, set reference bit for page

17

L RU implementation (Appx - Clock Hand Algo)

* Clock algorithm - look for nearest page without set
reference bit

17

L RU implementation (Appx - Clock Hand Algo)

use=1 use=1 use=0 use=1

Physical
fici 0 | | > || -

Clock Hand

18

L RU implementation (Appx - Clock Hand Algo)

use=0 use=1 use=0 use=1

Physical
fcm 0 | | o || -

Clock Hand

19

L RU implementation (Appx - Clock Hand Algo)

use=0 use=0 use=0 use=1

Physical
fcm 0 | | o || -

Clock Hand

20

L RU implementation (Appx - Clock Hand Algo)

Evict Page 2: Not recently used

use=0 use=0 use=0 use=1

Physical
jeol o | 22| -

Clock Hand

21

L RU implementation (Appx - Clock Hand Algo)

Page O Is accessed

use=1 use=0 use=0 use=1

Physical
ey I R

Clock Hand

22

L RU implementation (Appx - Clock Hand Algo)

use=1 use=0 use=0 use=1

Physical
fici 0 | | o || -

Clock Hand

23

L RU implementation (Appx - Clock Hand Algo)

use=1 use=0 use=0 use=0

Physical
jceol o | |22 | -

Clock Hand

24

L RU implementation (Appx - Clock Hand Algo)

use=0 use=0 use=0 use=0

Physical
jeol o | | 2|2 | -

Clock Hand

25

L RU implementation (Appx - Clock Hand Algo)

Evict Page 1: Not recently used

use=0 use=0 use=0 use=0

Physical
ey I

Clock Hand

20

Other

—actors

27

Other Factors

 Assume page Is both on disk and RAM

27

Other Factors

* Do we have to write the evicted page to disk”

27

Other Factors

* [fpageisclean?

27

Other Factors

 Assume page is both on disk and RAM
* Do we have to write the evicted page to disk’?
 [fpageisclean?
* NO!

27

Other Factors

* [fpageisdirty?

27

Other Factors

 Assume page Is both on disk and RAM
* Do we have to write the evicted page to disk’?
 [fpageisclean?
* NO!
 [fpageisdirty?
* Yes!

27

Other

—actors

28

Other Factors

 \When to swap in?

28

Other Factors

* Demand paging: swap in when needed

28

Other Factors

* Prefetching: swap in a page ahead of demand
(anticipating demand)

28

Other Factors

 \When to swap in”?

Demand paging: swap in when needed
Prefetching: swap in a page ahead of demand
(anticipating demand)

 When likely?

28

Other Factors

 Code page P brought to memory, P+1 also
ikely

28

Other Factors

 \When to swap in”?

* Demand paging: swap in when needed

* Prefetching: swap in a page ahead of demand
(anticipating demand)
 When likely?

 Code page P brought to memory, P+1 also
ikely
 When to write to disk

28

Other Factors

 \When to swap in”
* Demand paging: swap in when needed
* Prefetching: swap in a page ahead of demand
(anticipating demand)
* When likely?
 Code page P brought to memory, P+1 also
likely
 When to write to disk
* One at atime

28

Other Factors

o Clustered writes - preferred - 1 large write quicker
than multiple smaller writes

28

-ree space management

29

-ree space management

 Advantage of paging:

29

-ree space management

* Fixed size units. Easier to maintain free space.

29

-ree space management

e Non-fixed size units used where?

29

-ree space management

* Segmentation

29

-ree space management

e Malloc?

29

Malloc Caveat

&, Older malloc() implementations of UNIX used sbrk() / brk() system calls. But these days,
implementations use mmap() and sbrk() . The malloc() implementation of glibc (that's probably
7 the one you use on your Ubuntu 14.04) uses both sbrk() and mmap() and the choice to use
which one to allocate when you request the typically depends on the size of the allocation request,
which glibc does dynamically.

V For small allocations, glibc uses sbrk() and for larger allocations it uses mmap() . The macro

M _MMAP THRESHOLD is used to decide this. Currently, it's default value is set to 128K. This explains
why your code managed to allocate 135152 bytes as it is roughly ~128K. Even though, you
requested only 1 byte, your implementation allocates 128K for efficient memory allocation. So
segfault didn't occur until you cross this limit.

You can play with M_MAP_THRESHOLD by using mallopt() by changing the default parameters.

M_MMAP_THRESHOLD

For allocations greater than or equal to the limit specified (in bytes) by M MMAP_THRESHOLD
that can't be satisfied from the free list, the memory-allocation functions employ mmap(2) instead
of increasing the program break using sbrk(2).

Allocating memory using mmap(2) has the significant advantage that the allocated memory
blocks can always be independently released back to the system. (By contrast, the heap can be
trimmed only if memory is freed at the top end.) On the other hand, there are some
disadvantages to the use of mmap(2): deallocated space is not placed on the free list for reuse

Malloc &

-ree

31

Malloc &

-ree

31

Valloc & Free

e |nterface of malloc and free

31

Valloc & Free

 Malloc takes size as argument —> returns pointer

31

Valloc & Free

* Free takes a pointer and frees the corresponding
chunk

31

Valloc & Free

 Does not provide the size! How does it know the
size”?

31

—evisiting

—xternal

—-ragmentation

Heap

Used

32

—evisiting

—xternal

—-ragmentation

Heap

Used

Request for 15 bytes will fall

32

—ree |Ist

Heap

Used
10

Free list

20

30

33

—ree |Ist

Heap

Head

Used
10

Free list

20

Addr: 20

Len:10

> Null

30

33

SPIit

Head

Used

Addr: 20

Len:10

> Null

34

SPIit

Head

Request 1 byte
Used

Addr: 20

Len:10

> Null

34

SPIit

After

Head

Request 1 byte
Used

Addr: 20

Len:10

> Null

34

SPIit

After

Head

Head

Request 1 byte
Used

Addr: 20
Len:10

> Null

> Null

34

Coalescing

Head

Addr: 20

Len:10

> Null

35

Coalescing

Head

Free 10 bytes

Addr: 20

Len:10

> Null

35

Coalescing

Head

Free 10 bytes

Head —

Addr: 10

Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

> Null

> Null

35

Coalescing

Head

Free 10 bytes

Head —

Coalesce

Addr: 10

Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

> Null

> Null

35

Coalescing

Head

Free 10 bytes

Head —

Coalesce

Head —

Addr: 10
Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

>~ Null

> Null

> Null

35

[racking size ot allocations

 Freeing —> give space back to heap

36

[racking size ot allocations

 Freeing —> give space back to heap

36

[racking size ot allocations

 Freeing —> give space back to heap

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

Ptr >

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

Ptr >

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

Header used by malloc library

Ptr >

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

HPtr g
Header used by malloc library

Ptr >

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Ptr

Header used by malloc library

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Ptr

Header used by malloc library

Space returned to the caller

36

[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Magic #

Ptr

Header used by malloc library

Space returned to the caller

36

VWhy magic numbers?

Size

Magic #

Previous allocation
should end here

Space returned to the caller

37

VWhy magic numbers”

But, instead ends here ...

Space returned to the caller

38

VWhy magic numbers"?

assert(hptr->magic == 2939239)

Space returned to the caller

39

VWhere else we use Magic numbers”/

Let's use hexdump

40

—Xxample

Unallocated
4KB heap

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Size: 4088

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Size: 4088

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Size: 4088

Next: NULL

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Head—

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk

41

—Xxample

Unallocated
4KB heap

Head—

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk

41

—Xxample

After 1
allocation

Head—

Size: 4088

Next

VA = 16K

100 bytes
Allocated

Free 3980 bytes
chunk

42

—Xxample

After 1
allocation

Head—

Size: 4088

Next

VA = 16K

100 bytes
Allocated

> <

Free 3980 bytes
chunk

42

—Xxample

After 1
allocation

Size: 100
Magic: ...
Ptr —]
Head——
Size: 3980
Next=NULL

VA = 16K

100 bytes
Allocated

Free 3980 bytes
chunk

43

—Xxample

After 3
Allocations

Size: 100

Magic: ...

Size: 100

Magic: ...

Size: 100

Magic: ...

Head
Ptr —

Size: 3764

Next=NULL

VA = 16K

100 bytes
Allocated

I 100 bytes
Allocated

100 bytes
Allocated

Free 3764 bytes
chunk

> <

44

—Xxample

Freeing an
allocation

Size: 100

Magic: ...

Size: 100

Magic: ...

VA = 16K
100 bytes
I Allocated

100 bytes
f

Size: 100

Magic: ...

Head
Ptr —

Size: 3764

Next=NULL

100 bytes
Allocated

Free 3764 bytes
chunk

> <

45

—Xxample

Freeing an
allocation

Free(16K +

8 + 100 + 8)

= Free(16384 +
116)

= Free(16500)

Size: 100

Magic: ...

Size: 100

Magic: ...

VA = 16K
100 bytes
I Allocated

100 bytes
f

Size: 100

Magic: ...

ead
Ptr —

>

Size: 3764

Next=NULL

A

100 bytes
Allocated

Free 3764 bytes
chunk

> <

45

—Xxample

Freeing an
allocation

Head

Size: 100

Magic: ...

Size: 100

Next: 16708

Size: 100

Magic: ...

Size: 3764

Next=NULL

VA = 16K

100 bytes
Allocated

100 bytes
Free

100 bytes
Allocated

Free 3764 bytes
chunk

> <

46

Allocation Strategies

47

Allocation Strategies

47

Allocation Strategies

Before

47

Allocation Strategies

Before Head*@*@*@*'“u”

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

47

Allocation Strategies

Before Head—»@—*@-*@-*Null

Allocate 15 bytes

47

Allocation Strategies

Before Head—>¢—>®—>¢—> Null

Allocate 15 bytes

47

Allocation Strategies

Before Head*@*@*@* Null

Allocate 15 bytes

Best Fit

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null

Worst Fit

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

Next Fit

47

Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

Next Fit

Search pointer

47

Allocation Strategies

Before

Head—»@—»@—»@—»l\luu

Allocate 15 bytes

Best Fit

Worst Fit

First Fit

Next Fit

- @— @ — @
i~ @ — @ — @

- @— @ — @
- @ — @— @

Search pointer

47

Allocation Strategies

Before

Head—»@—»@—»@—»l\luu

Allocate 15 bytes

Best Fit

Worst Fit

First Fit

Next Fit

- @ — @— @
i~ @ — @— @

- @— @ — @
- @—@— @

Search pointer

47

Allocation Strategies

Betore Head*@*@*@*'“u”

Allocate 15 bytes

Exhaustive
Best Fit Head—»@—»@—>°—>Null search
Worst Fit Head—'a—'a—'@—"\'ull

First Fit Head—»@—»@—»@—»l\luu
Next Fit Head—»@ @—>°—>Null

Search pointer 47

Allocation Strategies

Before Head—»@—»@_.a_.,\]u”

Allocate 15 bytes

Exhaustive
Best Fit Head—»@—»@—>°_. Nulll search
Worst Fit Head—»@—»@—»@—» Null E;Q?Cuhstive
First Fit Head—»@—»e—»@_. Nl
Next Fit Head—»@ @_.e_.,\lu”

Search pointer 47

Allocation Strategies

Before Head—»@—»@_.a_.,\]u”

Allocate 15 bytes

Exhaustive
Best Fit Head—»@—»@—>°_.|\|u” Search
Worst Fit Head—»@—»@—»@—»Null E;Q?Cuhstive
First Fit Head—»@—»e_.@ - Nui| Qe
Next Fit Head—»@ @_.e_.,\lu”

Search pointer 47

Allocation Strategies

Before Head—»@—»@_.a_,,\]u”

Allocate 15 bytes

: Exhaustive
Best Fit Head—»@—»@—» —— Nulll search
Worst Fit Head_’@ﬁ@—»@ﬁ Nulll Exhaustive
search
| | — — -5 Quicker
First Fit | Head— (@) — @) — @F) — nui| L
Quicker
Next Fit Head—»@—»@—»Q—» Nulll search +
Spread

Search pointer out 47

Sinary

Suddy Allocator

48

Sinary Budady Allocator

Assume free list = 2AN

48

Sinary

Assume free list = 2AN 04 KB

Suddy Allocator

48

Sinary Budady Allocator

Assume free list = 2AN 04 KB

Want to allocate = 7 KB

48

Sinary Budady Allocator

Assume free list = 2AN 04 KB

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

48

Assume free list = 2AN
Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

32 KB

64 KB

48

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

Assume free list = 2AN 04 KB

32 KB 32 KB

48

Assume free list = 2AN 04 KB
32 KB 32 KB
160 KB

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

48

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

Assume free list = 2AN 04 KB

32 KB 32 KB
16 KB | 16 KB

48

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

Assume free list = 2AN 04 KB

32 KB 32 KB

16 KB | 16 KB
8
KB

48

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Sinary Budady Allocator

Assume free list = 2AN 04 KB

32 KB 32 KB

16 KB | 16 KB
8 | 8
KB | KB

48

Want to allocate = 7 KB

Recursively spilit till
we can do a “best fit”

Allocate

Sinary Budady Allocator

Assume free list = 2AN 04 KB

32 KB 32 KB

16 KB | 16 KB
8 | 8
KB | KB

48

Coalescing in

Sinary Buday Algorithm

16 7/7

32 5/5

64 2/2

Challenges@ MOVES
2048

Challenge 64 : Collect all the tiles you need!

49

e Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

* Base & Bounds
* Pros: Very quick, 2 registers
 (Cons: Contiguous block of memory -> fragmentation

e Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

* Base & Bounds
* Pros: Very quick, 2 registers
 (Cons: Contiguous block of memory -> fragmentation
* Segmentation
* Pros: Still relatively simple, 3 registers, lesser fragmentation
e (Cons: Still contiguous block of memory for segment
* Paging

* Base & Bounds
* Pros: Very quick, 2 registers
 (Cons: Contiguous block of memory -> fragmentation
e Segmentation
* Pros: Still relatively simple, 3 registers, lesser fragmentation
e (Cons: Still contiguous block of memory for segment
* Paging
* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process Is
huge!

Paging + TLB

Base & Bounds

* Pros: Very quick, 2 registers

* (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

* (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

* Pros: Improves the address translation speed (spatial & temporal
locality)

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

 Pros: Improves the address translation speed (spatial & temporal
locality)

* (Cons: Limited in size, memory overhead/process still huge

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process Is
huge!

Paging + TLB

* Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

 Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

 Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

* (Cons: Cache miss can be very expensive!

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process Is
huge!

Paging + TLB

* Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

 (Cons: Cache miss can be very expensive!

Swapping

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

 Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

e (Cons: Cache miss can be very expensive!

Swapping

* Pros: Can transparently handle more memory than PA space

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

e (Cons: Slow, lots of memory accesses; memory overhead/process is
huge!

Paging + TLB

 Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

 (Cons: Cache miss can be very expensive!

Swapping

* Pros: Can transparently handle more memory than PA space

* Policies: to optimise what to keep in cache

Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process Is
huge!

Paging + TLB

* Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

 (Cons: Cache miss can be very expensive!

Swapping

* Pros: Can transparently handle more memory than PA space

* Policies: to optimise what to keep in cache

Free space managament

Next time —> Memory Virtualisation in Linux

51

