Operating Systems
Lecture 16: swapping + Free Memory

Nipun Batra
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Swap in
Swap out

Memory as large as disk, as fast as RAM

Done well
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Done well : Memory as large as disk, as fast as RAM
Done bad : Memory as small as RAM, as slow as disk
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~age

Replacement

Replacement

Policies - Optimal

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

11



Page Replacement Policies - Optimal
Replacement

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

Optimal strategy: evict pages to be accessed furthest in future
—> Fewest possible cache misses
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~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1

Cache size/Physical memory size: 4 pages
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~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1

Cache size/Physical memory size: 4 pages

Strategy: evict pages based on FIFO
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~age

C

Replacement

Policies -

O

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5

Cache size/Physical memory size: 3 pages/4 pages

ache size: 3

Cache size: 4
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age Replacement Policies -FIFO

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4
1 Miss 1

2 Miss 2, 1
3 Miss 3,2, 1
4 Miss 4,3, 2
1 Miss 1,4, 3
2 Miss 2,1, 4
5 Miss 5,2, 1
1 Hit 5,2, 1
2 Hit 5,2, 1
3 Miss 3,5, 2
4 Miss 4,3,5
5 Hit 4,3,5




age Replacement Policies -FIFO

Workload (page): 1,2,3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4

1 Miss 1 1 Miss 1
2 WIEES 2,1 2 Miss 2, 1
3 Miss 3,2, 1 3 Miss 3,2, 1
4 Miss 4,3, 2 4 Miss 4, 3,2, 1
1 Miss 1,4, 3 1 Hit 4,3, 2, 1
2 Miss 2,1, 4 2 Hit 4,3, 2, 1
5 Miss 5,2, 1 5 Miss 54,3, 2
1 Hit 5,2, 1 1 Miss 1,5,4,2
2 Hit 5,2, 1 2 Miss 2,1,5 4
3 Miss 3,5, 2 3 Miss 3,2,1,5
4 Miss 4,3, 5 4 Miss 4, 3,2, 1
5 Hit 4, 3,5 5 Miss 54,3, 2




age Replacement Policies -FIFO
Belady's anomaly

Workload (page): 1,2, 3,4,1,2,5,1,2,3,4,5
Cache size/Physical memory size: 3 pages/4 pages

Cache size: 3 Cache size: 4

1 Miss 1 1 Miss 1
2 WIEES 2,1 2 Miss 2, 1
3 Miss 3,2, 1 3 Miss 3,2, 1
4 Miss 4,3, 2 4 Miss 4, 3,2, 1
1 Miss 1,4, 3 1 Hit 4,3, 2, 1
2 Miss 2,1, 4 2 Hit 4,3, 2, 1
5 Miss 5,2, 1 5 Miss 54,3, 2
1 Hit 5,2, 1 1 Miss 1,5,4,2
2 Hit 5,2, 1 2 Miss 2,1,5 4
3 Miss 3,5, 2 3 Miss 3,2,1,5
4 Miss 4,3, 5 4 Miss 4, 3,2, 1
5 Hit 4, 3,5 5 Miss 54,3, 2
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Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 4 pages

Random
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~age

Replacement

Policies -

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 4 pages

Random strategy: randomly evict pages

Random

14



~age

Replacement

and LU

Policies -History based (L

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

—~U
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~age
and L

Replacement

zu>

Policies -History based (L

Workload (page): 1,2,3,4,1,2,3,4,3,2,1
Cache size/Physical memory size: 3 pages

Strategy:
1. Least frequently used - evict least frequently used page
2. Least recently used - evict least recently used page

—~U



SU implementation
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L RU Implementation

 On each access, update time of page
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L RU Implementation

* When looking for eviction:
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L RU Implementation

» Search for all candidate sets (millions of pages)
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L RU Implementation

* Find least recently used

16



L RU Implementation

 Huge overhead!
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RU implementation (Appx - Clock Hand Algo)
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L RU implementation (Appx - Clock Hand Algo)

 On each access, set reference bit for page
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L RU implementation (Appx - Clock Hand Algo)

* Clock algorithm - look for nearest page without set
reference bit
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L RU implementation (Appx - Clock Hand Algo)

use=1 use=1 use=0 use=1

Physical
fici 0 | | > || -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

use=0 use=1 use=0 use=1

Physical
fcm 0 | | o || -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

use=0 use=0 use=0 use=1

Physical
fcm 0 | | o || -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

Evict Page 2: Not recently used

use=0 use=0 use=0 use=1

Physical
jeol o | 22| -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

Page O Is accessed

use=1 use=0 use=0 use=1

Physical
ey I R

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

use=1 use=0 use=0 use=1

Physical
fici 0 | | o || -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

use=1 use=0 use=0 use=0

Physical
jceol o | |22 | -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

use=0 use=0 use=0 use=0

Physical
jeol o | | 2|2 | -

Clock Hand
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L RU implementation (Appx - Clock Hand Algo)

Evict Page 1: Not recently used

use=0 use=0 use=0 use=0

Physical
ey I

Clock Hand

20
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Other Factors

 Assume page Is both on disk and RAM
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Other Factors

* Do we have to write the evicted page to disk”
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Other Factors

* [fpageisclean?
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Other Factors

 Assume page is both on disk and RAM
* Do we have to write the evicted page to disk’?
 [fpageisclean?
* NO!

27



Other Factors

* [fpageisdirty?

27



Other Factors

 Assume page Is both on disk and RAM
* Do we have to write the evicted page to disk’?
 [fpageisclean?
* NO!
 [fpageisdirty?
* Yes!

27
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Other Factors

 \When to swap in?
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Other Factors

* Demand paging: swap in when needed

28



Other Factors

* Prefetching: swap in a page ahead of demand
(anticipating demand)

28



Other Factors

 \When to swap in”?

Demand paging: swap in when needed
Prefetching: swap in a page ahead of demand
(anticipating demand)

 When likely?

28



Other Factors

 Code page P brought to memory, P+1 also
ikely
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Other Factors

 \When to swap in”?

* Demand paging: swap in when needed

* Prefetching: swap in a page ahead of demand
(anticipating demand)
 When likely?

 Code page P brought to memory, P+1 also
ikely
 When to write to disk

28



Other Factors

 \When to swap in”
* Demand paging: swap in when needed
* Prefetching: swap in a page ahead of demand
(anticipating demand)
* When likely?
 Code page P brought to memory, P+1 also
likely
 When to write to disk
* One at atime

28



Other Factors

o Clustered writes - preferred - 1 large write quicker
than multiple smaller writes

28



-ree space management
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-ree space management

 Advantage of paging:

29



-ree space management

* Fixed size units. Easier to maintain free space.

29



-ree space management

e Non-fixed size units used where?

29



-ree space management

* Segmentation

29



-ree space management

e Malloc?

29



Malloc Caveat

&, Older malloc() implementations of UNIX used sbrk() / brk() system calls. But these days,
implementations use mmap() and sbrk() . The malloc() implementation of glibc (that's probably
7 the one you use on your Ubuntu 14.04) uses both sbrk() and mmap() and the choice to use
which one to allocate when you request the typically depends on the size of the allocation request,
which glibc does dynamically.

V For small allocations, glibc uses sbrk() and for larger allocations it uses mmap() . The macro

M _MMAP THRESHOLD is used to decide this. Currently, it's default value is set to 128K. This explains
why your code managed to allocate 135152 bytes as it is roughly ~128K. Even though, you
requested only 1 byte, your implementation allocates 128K for efficient memory allocation. So
segfault didn't occur until you cross this limit.

You can play with M_MAP_THRESHOLD by using mallopt() by changing the default parameters.

M_MMAP_THRESHOLD

For allocations greater than or equal to the limit specified (in bytes) by M MMAP_THRESHOLD
that can't be satisfied from the free list, the memory-allocation functions employ mmap(2) instead
of increasing the program break using sbrk(2).

Allocating memory using mmap(2) has the significant advantage that the allocated memory
blocks can always be independently released back to the system. (By contrast, the heap can be
trimmed only if memory is freed at the top end.) On the other hand, there are some
disadvantages to the use of mmap(2): deallocated space is not placed on the free list for reuse
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Malloc &

-ree
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Valloc & Free

e |nterface of malloc and free

31



Valloc & Free

 Malloc takes size as argument —> returns pointer
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Valloc & Free

* Free takes a pointer and frees the corresponding
chunk

31



Valloc & Free

 Does not provide the size! How does it know the
size”?
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—evisiting

—xternal

—-ragmentation

Heap

Used
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—evisiting

—xternal

—-ragmentation

Heap

Used

Request for 15 bytes will fall
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—ree |Ist

Heap

Used
10

Free list

20

30
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—ree |Ist

Heap

Head

Used
10

Free list

20

Addr: 20

Len:10

> Null

30
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SPIit

Head

Used

Addr: 20

Len:10

> Null
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SPIit

Head

Request 1 byte
Used

Addr: 20

Len:10

> Null
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SPIit

After

Head

Request 1 byte
Used

Addr: 20

Len:10

> Null

34



SPIit

After

Head

Head

Request 1 byte
Used

Addr: 20
Len:10

> Null

> Null
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Coalescing

Head

Addr: 20

Len:10

> Null
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Coalescing

Head

Free 10 bytes

Addr: 20

Len:10

> Null
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Coalescing

Head

Free 10 bytes

Head —

Addr: 10

Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

> Null

> Null
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Coalescing

Head

Free 10 bytes

Head —

Coalesce

Addr: 10

Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

> Null

> Null

35



Coalescing

Head

Free 10 bytes

Head —

Coalesce

Head —

Addr: 10
Len:10

Addr: 20

Len:10

Addr: 20
Len: 10

>~ Null

> Null

> Null
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[racking size ot allocations

 Freeing —> give space back to heap
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[racking size ot allocations

 Freeing —> give space back to heap
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[racking size ot allocations

 Freeing —> give space back to heap

Space returned to the caller

36



[racking size ot allocations

 Freeing —> give space back to heap

Ptr >

Space returned to the caller
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[racking size ot allocations

 Freeing —> give space back to heap

Ptr >

Space returned to the caller
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[racking size ot allocations

 Freeing —> give space back to heap

Header used by malloc library

Ptr >

Space returned to the caller

36



[racking size ot allocations

 Freeing —> give space back to heap

HPtr g
Header used by malloc library

Ptr >

Space returned to the caller
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[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Ptr

Header used by malloc library

Space returned to the caller
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[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Ptr

Header used by malloc library

Space returned to the caller

36



[racking size ot allocations

 Freeing —> give space back to heap

HPtr

Size

Magic #

Ptr

Header used by malloc library

Space returned to the caller
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VWhy magic numbers?

Size

Magic #

Previous allocation
should end here

Space returned to the caller
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VWhy magic numbers”

But, instead ends here ...

Space returned to the caller
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VWhy magic numbers"?

assert(hptr->magic == 2939239)

Space returned to the caller
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VWhere else we use Magic numbers”/

Let's use hexdump
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—Xxample

Unallocated
4KB heap

4088 bytes
chunk
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—Xxample

Unallocated
4KB heap

4088 bytes
chunk
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—Xxample

Unallocated
4KB heap

4088 bytes
chunk

41



—Xxample

Unallocated
4KB heap

Size: 4088

4088 bytes
chunk

41



—Xxample

Unallocated
4KB heap

Size: 4088

4088 bytes
chunk

41



—Xxample

Unallocated
4KB heap

Size: 4088

Next: NULL

4088 bytes
chunk
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—Xxample

Unallocated
4KB heap

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk
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—Xxample

Unallocated
4KB heap

Head—

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk

41



—Xxample

Unallocated
4KB heap

Head—

Size: 4088

Next: NULL

VA = 16K

4088 bytes
chunk

41



—Xxample

After 1
allocation

Head—

Size: 4088

Next

VA = 16K

100 bytes
Allocated

Free 3980 bytes
chunk
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—Xxample

After 1
allocation

Head—

Size: 4088

Next

VA = 16K

100 bytes
Allocated

> <

Free 3980 bytes
chunk
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—Xxample

After 1
allocation

Size: 100
Magic: ...
Ptr — ]
Head——
Size: 3980
Next=NULL

VA = 16K

100 bytes
Allocated

Free 3980 bytes
chunk
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—Xxample

After 3
Allocations

Size: 100

Magic: ...

Size: 100

Magic: ...

Size: 100

Magic: ...

Head
Ptr —

Size: 3764

Next=NULL

VA = 16K

100 bytes
Allocated

I 100 bytes
Allocated

100 bytes
Allocated

Free 3764 bytes
chunk

> <
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—Xxample

Freeing an
allocation

Size: 100

Magic: ...

Size: 100

Magic: ...

VA = 16K
100 bytes
I Allocated

100 bytes
f

Size: 100

Magic: ...

Head
Ptr —

Size: 3764

Next=NULL

100 bytes
Allocated

Free 3764 bytes
chunk

> <
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—Xxample

Freeing an
allocation

Free(16K +

8 + 100 + 8)

= Free(16384 +
116)

= Free(16500)

Size: 100

Magic: ...

Size: 100

Magic: ...

VA = 16K
100 bytes
I Allocated

100 bytes
f

Size: 100

Magic: ...

ead
Ptr —

>

Size: 3764

Next=NULL

A

100 bytes
Allocated

Free 3764 bytes
chunk

> <
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—Xxample

Freeing an
allocation

Head

Size: 100

Magic: ...

Size: 100

Next: 16708

Size: 100

Magic: ...

Size: 3764

Next=NULL

VA = 16K

100 bytes
Allocated

100 bytes
Free

100 bytes
Allocated

Free 3764 bytes
chunk

> <
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Allocation Strategies
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Allocation Strategies
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Allocation Strategies

Before

47



Allocation Strategies

Before Head*@*@*@*'“u”

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes
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Allocation Strategies

Before Head—»@—*@-*@-*Null

Allocate 15 bytes

47



Allocation Strategies

Before Head—>¢—>®—>¢—> Null

Allocate 15 bytes

47



Allocation Strategies

Before Head*@*@*@* Null

Allocate 15 bytes

Best Fit

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null

Worst Fit

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

Next Fit

47



Allocation Strategies

Before Head*@*@*@*'“u”

Allocate 15 bytes

Best Fit Head—»@—»@—>°—> Null
Worst Fit Head—>¢—>¢—»@_. Null

First Fit Head—»@—»@—»@—»l\luu

Next Fit

Search pointer

47



Allocation Strategies

Before

Head—»@—»@—»@—»l\luu

Allocate 15 bytes

Best Fit

Worst Fit

First Fit

Next Fit

- @— @ — @
i~ @ — @ — @

- @— @ — @
- @ — @— @

Search pointer

47



Allocation Strategies

Before

Head—»@—»@—»@—»l\luu

Allocate 15 bytes

Best Fit

Worst Fit

First Fit

Next Fit

- @ — @— @
i~ @ — @— @

- @— @ — @
- @—@— @

Search pointer

47



Allocation Strategies

Betore Head*@*@*@*'“u”

Allocate 15 bytes

Exhaustive
Best Fit Head—»@—»@—>°—>Null search
Worst Fit Head—'a—'a—'@—"\'ull

First Fit Head—»@—»@—»@—»l\luu
Next Fit Head—»@ @—>°—>Null

Search pointer 47




Allocation Strategies

Before Head—»@—»@_.a_.,\]u”

Allocate 15 bytes
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Allocation Strategies

Before Head—»@—»@_.a_,,\]u”

Allocate 15 bytes

: Exhaustive
Best Fit Head—»@—»@—» —— Nulll search
Worst Fit Head_’@ﬁ@—»@ﬁ Nulll Exhaustive
search
| | — — -5 Quicker
First Fit | Head— (@) — @) — @F) — nui| L
Quicker
Next Fit Head—»@—»@—»Q—» Nulll search +
Spread

Search pointer out 47
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Want to allocate = 7 KB
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we can do a “best fit”

Allocate
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Coalescing in

Sinary Buday Algorithm

16 7/7

32 5/5

64 2/2

Challenges@ MOVES
2048

Challenge 64 : Collect all the tiles you need!
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Base & Bounds

* Pros: Very quick, 2 registers

 (Cons: Contiguous block of memory -> fragmentation

Segmentation

* Pros: Still relatively simple, 3 registers, lesser fragmentation

e (Cons: Still contiguous block of memory for segment

Paging

* Pros: Very low chances of segmentation

 (Cons: Slow, lots of memory accesses; memory overhead/process Is
huge!

Paging + TLB

* Pros: Improves the address translation speed (spatial & temporal
locality)

 (Cons: Limited in size, memory overhead/process still huge

Multi-level Paging

* Pros: Reduces memory overhead/process

 (Cons: Cache miss can be very expensive!

Swapping

* Pros: Can transparently handle more memory than PA space

* Policies: to optimise what to keep in cache

Free space managament



Next time —> Memory Virtualisation in Linux
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