
Operating Systems 
Lecture 19: Locks

Nipun Batra 
Oct 16, 2018 



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free
• Is not free; does not execute till lock free



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free
• Is not free; does not execute till lock free

• Thread 1 executes



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free
• Is not free; does not execute till lock free

• Thread 1 executes
• Thread 1 Unlocks



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free
• Is not free; does not execute till lock free

• Thread 1 executes
• Thread 1 Unlocks
• Thread 2 checks (keeps on doing so) for lock 

being free



 2

Locks

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

Thread 1 Thread 2

 cc7: mov    0x20135f,%eax  
 ccd: add    $0x1,%eax
 cd0: mov    %eax,0x20135f

• Thread 1 checks if lock is free
• Lock is free, Thread 1 acquires the lock
• Thread 2 checks if lock is free
• Is not free; does not execute till lock free

• Thread 1 executes
• Thread 1 Unlocks
• Thread 2 checks (keeps on doing so) for lock 

being free
• Thread 2 executes and unlocks



Goals of a Lock

 3



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead
• Performance overhead when:



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead
• Performance overhead when:

• Single thread, no contention



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead
• Performance overhead when:

• Single thread, no contention
• Multiple threads, single CPU



Goals of a Lock

 3

• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead
• Performance overhead when:

• Single thread, no contention
• Multiple threads, single CPU
• Multiple threads, multiple CPU



Building a Lock - Disable Interrupts

 4

Void lock() 
{ Disable Interrupts}

Void unlock() 
{ Enable Interrupts}

Critical Section



Building a Lock - Disable Interrupts

 5



Building a Lock - Disable Interrupts

 5

Pros



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 
2. Does not work on multiprocessors



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 
2. Does not work on multiprocessors

1. Each processor will have own interrupts?!



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 
2. Does not work on multiprocessors

1. Each processor will have own interrupts?!
3. Loss of interrupts



Building a Lock - Disable Interrupts

 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 
2. Does not work on multiprocessors

1. Each processor will have own interrupts?!
3. Loss of interrupts
4. Inefficient - Interrupt routines can be slow



Building a Lock - Load/Store or Flag

 6



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 

• set flag, execute critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 

• set flag, execute critical section
• After completion of critical section, unset flag



Building a Lock - Load/Store or Flag

 7



Building a Lock - Load/Store or Flag

 7

typedef struct __lock_t { int flag; } lock_t; 



Building a Lock - Load/Store or Flag

 7

typedef struct __lock_t { int flag; } lock_t; 

void init(lock_t *mutex)  
{ // 0 -> lock is available, 1 -> held   
mutex->flag = 0; } 



Building a Lock - Load/Store or Flag

 7

typedef struct __lock_t { int flag; } lock_t; 

void init(lock_t *mutex)  
{ // 0 -> lock is available, 1 -> held   
mutex->flag = 0; } 

void lock(lock_t *mutex) {   
while (mutex->flag == 1);  
// spin-wait (do nothing)   
mutex->flag = 1; // now SET it!   
} 



Building a Lock - Load/Store or Flag

 7

typedef struct __lock_t { int flag; } lock_t; 

void unlock(lock_t *mutex) { mutex->flag = 0; }

void init(lock_t *mutex)  
{ // 0 -> lock is available, 1 -> held   
mutex->flag = 0; } 

void lock(lock_t *mutex) {   
while (mutex->flag == 1);  
// spin-wait (do nothing)   
mutex->flag = 1; // now SET it!   
} 



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()
while(flag ==1)



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()
while(flag ==1)
flag = 1



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()
while(flag ==1)
flag = 1Context Switch



Building a Lock - Load/Store or Flag

 8

Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()
while(flag ==1)
flag = 1Context Switch

flag = 1



Goals of a Lock

 9



Goals of a Lock

 9

• Mutual exclusion: X



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!

Need Hardware Support! 



Atomic Instructions - Test & Set

 10

1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 



Atomic Instructions - Test & Set

 10

1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 

• Return old value pointed by ptr



Atomic Instructions - Test & Set

 10

1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 

• Return old value pointed by ptr
• Simultaneously update to new 



Atomic Instructions - Test & Set

 10

1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 

• Return old value pointed by ptr
• Simultaneously update to new 
• Performed Atomically and by Hardware!



Atomic Instructions - Test & Set

 10

1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 

• Return old value pointed by ptr
• Simultaneously update to new 
• Performed Atomically and by Hardware!

• The above is just a software depiction



Atomic Instructions - Test & Set

 11

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 



Atomic Instructions - Test & Set

 12

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Define lock structure



Atomic Instructions - Test & Set

 13

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Init by setting flag 
to 0



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 1: Lock not held 
by any thread



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 1: Lock not held 
by any thread



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 1: Lock not held 
by any thread

• old value of flag = 
0



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 1: Lock not held 
by any thread

• old value of flag = 
0

• Set flag to 1 and 
return 0 from test 
and set —> 
Current thread 
acquires lock



Atomic Instructions - Test & Set

 14

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 1: Lock not held 
by any thread

• old value of flag = 
0

• Set flag to 1 and 
return 0 from test 
and set —> 
Current thread 
acquires lock

• No spin waiting for 
current thread



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread

• old value of flag = 
1



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread

• old value of flag = 
1

• Set flag to 1 and 
return 1 from test 
and set



Atomic Instructions - Test & Set

 15

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread

• old value of flag = 
1

• Set flag to 1 and 
return 1 from test 
and set

• Spin waiting for 
current thread 
since it goes in 
while loop 



Atomic Instructions - Test & Set

 16

1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Once out of 
critical section, 
unset flag



Test & Set Evaluation

 17



Test & Set Evaluation

 17

• Mutual exclusion: Yes



Test & Set Evaluation

 17

• Mutual exclusion: Yes
• Fairness: X



Test & Set Evaluation

 17

• Mutual exclusion: Yes
• Fairness: X
• Performance: Spin Waiting is bad!



Test & Set Evaluation

 17

• Mutual exclusion: Yes
• Fairness: X
• Performance: Spin Waiting is bad!

• Single core: Each thread spins away its allotted 
time slot, eating away the time for the thread 
holding the critical section



Test & Set Evaluation

 17

• Mutual exclusion: Yes
• Fairness: X
• Performance: Spin Waiting is bad!

• Single core: Each thread spins away its allotted 
time slot, eating away the time for the thread 
holding the critical section

• Multi core: If num threads ~ num cores



Test & Set Evaluation

 17

• Mutual exclusion: Yes
• Fairness: X
• Performance: Spin Waiting is bad!

• Single core: Each thread spins away its allotted 
time slot, eating away the time for the thread 
holding the critical section

• Multi core: If num threads ~ num cores
• Each thread waiting to acquire lock can spin on 

its core, not eating up the time needed (quick) 
for the critical section to execute on other



Atomic Instructions - Compare & Swap

 18

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected
• Yes

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected
• Yes

• Set new value at address

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected
• Yes

• Set new value at address
• Return old value at address

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected
• Yes

• Set new value at address
• Return old value at address

• No

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 



Atomic Instructions - Compare & Swap

 18

• Test whether value at address (ptr) is equal to expected
• Yes

• Set new value at address
• Return old value at address

• No
• Return old value at address

1 int CompareAndSwap(int *ptr, int expected, int new) { 
2   int actual = *ptr; 
3   if (actual == expected) 
4   *ptr = new; 
5   return actual; 
6 } 


