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• Thread 2 checks if lock is free
• Is not free; does not execute till lock free

• Thread 1 executes
• Thread 1 Unlocks
• Thread 2 checks (keeps on doing so) for lock 

being free
• Thread 2 executes and unlocks
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• Mutual exclusion: Only a single thread can run the 
critical section at a time

• Fairness: Each thread should get a fair chance of 
running the critical section. No starvation.

• Performance: Low time overhead
• Performance overhead when:

• Single thread, no contention
• Multiple threads, single CPU
• Multiple threads, multiple CPU
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 5

Pros
1. Simple and works!

Cons
1. Threads are given a lot of trust

1. Call lock() at starting of program and run infinitely 
2. Does not work on multiprocessors

1. Each processor will have own interrupts?!
3. Loss of interrupts
4. Inefficient - Interrupt routines can be slow



Building a Lock - Load/Store or Flag

 6



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 

• set flag, execute critical section



Building a Lock - Load/Store or Flag

 6

• Use a single flag to indicate if a thread has 
possession of critical section

• Thread calls lock before entering critical section
• Is flag set? (some other thread has critical section 

control)
• Yes - Spin waiting
• No 

• set flag, execute critical section
• After completion of critical section, unset flag
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typedef struct __lock_t { int flag; } lock_t; 

void unlock(lock_t *mutex) { mutex->flag = 0; }

void init(lock_t *mutex)  
{ // 0 -> lock is available, 1 -> held   
mutex->flag = 0; } 

void lock(lock_t *mutex) {   
while (mutex->flag == 1);  
// spin-wait (do nothing)   
mutex->flag = 1; // now SET it!   
} 
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Thread 1 Thread 2

Call Lock()
Lock held by some other thread
while(flag ==1) // Busy spinning
Other thread unlocks —> flag = 0

Context Switch
Call Lock()
while(flag ==1)
flag = 1Context Switch

flag = 1



Goals of a Lock

 9



Goals of a Lock

 9

• Mutual exclusion: X



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!



Goals of a Lock

 9

• Mutual exclusion: X
• Fairness: X
• Performance: Spin Waiting is bad!

Need Hardware Support! 
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1 int TestAndSet(int *ptr, int new) { 
2   int old = *ptr;  // fetch old value at ptr 
3   *ptr = new;  // store ‘new’ into ptr 
4   return old;  // return the old value 
5 } 

• Return old value pointed by ptr
• Simultaneously update to new 
• Performed Atomically and by Hardware!

• The above is just a software depiction
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• old value of flag = 
0
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return 0 from test 
and set —> 
Current thread 
acquires lock

• No spin waiting for 
current thread
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1 typedef struct __lock_t { 
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4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
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15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Case 2: Lock held by 
some other thread

• old value of flag = 
1

• Set flag to 1 and 
return 1 from test 
and set

• Spin waiting for 
current thread 
since it goes in 
while loop 
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1 typedef struct __lock_t { 
2   int flag; 
3 } lock_t; 
4  
5 void init(lock_t *lock) { 
6   // 0 indicates that lock is available, 
7   // 1 that it is held 
8   lock->flag = 0; 
9 } 
10 void lock(lock_t *lock) { 
11   while (TestAndSet(&lock->flag, 1) == 1) 
12   ;  // spin-wait 
13 } 
14  
15 void unlock(lock_t *lock) { 
16   lock->flag = 0; 
18 } 

Once out of 
critical section, 
unset flag
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• Mutual exclusion: Yes
• Fairness: X
• Performance: Spin Waiting is bad!

• Single core: Each thread spins away its allotted 
time slot, eating away the time for the thread 
holding the critical section

• Multi core: If num threads ~ num cores
• Each thread waiting to acquire lock can spin on 

its core, not eating up the time needed (quick) 
for the critical section to execute on other
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