Operating Systems

Lecture 20: semaphores Revision +

Common Concurrency

Nipun Batra
Nov 1, 2018

Proplems

Histogram of Lab-MidSem

6 B Lab-MidSem (count)

0

Q O O O 0O O O O O O O O O O
1 o\ (TP & o S g o (S48

Lab-MidSem

Administrative

e Feedback from lab quiz?
 How to run it better?
* Automated checkers?
 How?”
* Assignment deadline postponed to 6th noon
e Quiz 3 on Mon, 12th November?
* Wil give the syllabus in writing, no additional questions
entertained
* Project grading:
e Second round of project grading:
e 12th and 16th Nov
e Third and final round:
* 19th and 23rd Nov

Condition Variaples

- wait (cond_t *cv, mutex_t *lock)

 Assumes lock is held when wait() is called

* Puts caller to sleep + atomically releases lock

* \When awoken, reacquires lock before returning

- signal (cond_t *cv)

* Wake a single waiting thread

* |f there is no waiting thread, just return, do nothing

Condition Variaples wait Pseudocode

- wait (cond_t *cv, mutex_t *lock)

Assume lock is held initially
othread_mutex_unlock(lock)
olock_on_condition(cv)

Move from Ready to Waiting/Blocked State
Move to Ready State
othread_mutex_lock(lock)

Condition Variaples wait Pseudocode

Which of these are atomic?

- wait (cond_t *cv, mutex_t *lock)

Assume lock is held initially
othread_mutex_unlock(lock)
olock_on_condition(cv)

Move from Ready to Waiting/Blocked State
Move to Ready State
othread_mutex_lock(lock)

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

| block_on_condition(cv)

*| Move from Ready to Waiting/Blocked State
* Move to Ready State

* pthread_mutex_lock(lock)

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

| block_on_condition(cv) Atomic
| Move from Ready to Waiting/Blocked State

* Move to Ready State

* pthread_mutex_lock(lock)

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

| block_on_condition(cv) Atomic
*| Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

olock_on_condition(cv) Atomic
Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

olock_on_condition(cv) Atomic
Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

When does wait return?

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

olock_on_condition(cv) Atomic
Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

When does wait return?
When lock has been acqguired.

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

olock_on_condition(cv) Atomic
Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

When does wait return?
When lock has been acqguired.
What If some other thread holds the lock — block!

Condition Variaples wait Pseudocode

Which of these are atomic?
-+ wait (cond_t *cv, mutex_t *lock)

* Assume lock is held initially

* pthread_mutex_unlock(lock)

olock_on_condition(cv) Atomic
Move from Ready to Waiting/Blocked State

* Move to Ready State |

e pthread_mutex_lock(lock) Signal

When does wait return?
When lock has been acqguired.
What If some other thread holds the lock — block!

Why do we need to lock again®?

—Xercise: order using condition variaples
Correct Solution

1 void *child(void *arg) {
2 printf("child\n");

3 thread exit()

4 return NULL; }

/7 Int main(int argc, char *argv[]) {

8 printf("parent: begin\n");

9 pthread_t ¢

10 Pthread create(&c, NULL, child, NULL); // create child
11 thread_join()

12 printf("parent: end\n");

13 return O; }

—Xercise: order using condition variaples

Correct Solution
void thread_exit {

mutex_lock(&m)
Done =1
cond_signal(&c)
mutex_unlock(&m)

[
2
3
/A
/

3
9

void *child(void *arg) {

printf("child\n");
thread exit()
return NULL; }

INt main(int argc, char *argv(]) {

10
11
12
13

printf("parent: begin\n");
pthread_t ¢;
Pthread create(&c, NULL, child, NULL); // create child
thread_join()
printf("parent: end\n");
return O; }

—Xercise: order using condition variaples

Correct Solution
void thread_exit {

void thread_join {
mutex_lock(&m) //w
while (done==0) 11X
cond_wait(&c, &m) //y
mutex_unlock(&m) } //z

mutex_lock(&m)
Done =1
cond_signal(&c)
mutex_unlock(&m)

[
2
3
/A
/

3
9

void *child(void *arg) {

printf("child\n");
thread exit()
return NULL; }

INt main(int argc, char *argv(]) {

10
11
12
13

printf("parent: begin\n");
pthread_t ¢;
Pthread create(&c, NULL, child, NULL); // create child
thread_join()
printf("parent: end\n");
return O; }

—xercise: Bulld a lock using semapnores

sem tm;
sem_init(&m, O, 1);

sem_walt(&m);
//critical section here
sem_post(&m),

O U BN

Refresher Notes

1 int sem_wait(sem_t *s){
2 s->value -=1

3 wait if s->value <0

4}

1 int sem_post(sem_t *s) {

2 S->value +=1

3 wake one waiting thread if any
4}

Value | Thread O State Thread 1 State 12 State

Value

Thread 0O

State

Thread 1

State

T2

State

Running

Ready

Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running

Call sem_wait()

Running

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

Increment sem

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

-1 Increment sem
-1 wake(T1) Running Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

-1 Increment sem
-1 wake(T1) Running Ready
-1 sem_post() returns Running Ready

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

-1 Increment sem
-1 wake(T1) Running Ready
-1 sem_post() returns Running Ready
-1 Interrupt; Switch = T1 Ready Running

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

- Increment sem
-1 wake(T1) Running Ready
-1 sem_post() returns Running Ready
-1 Interrupt; switch = 11 Ready RunNning

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call sem_wait() Running Ready Ready
0 sem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call sem_wait() Running Ready
-1 Ready | decrement sem Running Ready
-1 Ready | (sem < 0)—sleep sleeping Ready
-1 Running | Switch = T2 sleeping Running
-1 Call sem_wait() Running
-2 (crit sect: end) Running sleeping Decrement sem Running
-2 call sem_post() Running sleeping (sem<0) -> Sleep Sleeping

Switch T1

1| Increment sem Can T1 run before
-1 wake(T1) Running Ready Sem—pOSt returns’?
-1 sem_post() returns Running Ready NO!
-1 Interrupt; switch = 11 Ready RunNning

Semaphores Implementation

Semaphores Implementation

* Build semaphores using locks and condition variables

Semaphores Implementation

* Any critical section should require locking

Semaphores Implementation

* Signal and Wait on condition

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

AP|

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

1 #include <semaphore.n>
2 sem_ts,

Semaphores Implementation

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

AP|

Our implementation

1 #include <semaphore.n>
2 sem_ts,

1 typedef struct __Zem_t {
2 intvalue;

3 pthread_cond_t cong,;

4 pthread_mutex_t lock;

5}/em t

6

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

10

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

10

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

AP|

10

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

10

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

1 Int sem_init(sem_t *s,
Nt init_val) {

2 s->value=init_val;
3}

10

Semaphores Implementation

* Build semaphores using locks and condition variables

* Any critical section should require locking

e Signal and Wait on condition

* Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

1 // only one thread can call this
1 int sem init(sem t *s, 2 void Zem_init(Zem _t *s, int value) {
ntinit val { 3 s->value =value;

- o 4 Cond_ init(&s->cond);
2 s->value=initval; 5 Mutex_init(&s->lock),

3) 51

10

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

11

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

11

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

API

11

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

11

Semaphores Implementation

* Build semaphores using locks and condition variables

* Any critical section should require locking
e Signal and Wait on condition

 Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

API

Our implementation

T Int sem_post(sem_t *s) {

2 S->value +=1

3 wake one waiting thread if
any

4}

11

Semaphores Implementation

Build semaphores using locks and condition variables

* Any critical section should require locking
e Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

API

Our implementation

T Int sem_post(sem_t *s) {

2 S->value +=1

3 wake one waiting thread if
any

4}

Atomic operation

11

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

T int sem_post(sem_t *s) { vold Zem_post(Zem_t *s) {
) <o>value += 1 23 Mutex lock(&s->lock);

L . 24 s->value++;
ne waiting thread if |
3 wake one waiting thread 25 Cond_signal(&s->cond),
any 26 Mutex unlock(&s->lock):
4} 27}

Atomic operation

11

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when

negative, reflects the number of waiting threads

API

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

1 Iint sem_wait(sem_t *s){
2 s->value -=1

3 wait if s-=>value <0

4}

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

1 Iint sem_wait(sem_t *s){
2 s->value -=1

3 wait if s-=>value <0

4}

Atomic operation

12

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

void Zem_wait(Zem t *s) {
1 Iint sem_wait(sem_t *s){

2 s->value -= 1 T Mutex_lock(&s->lock),

3 wait if s->value <0 2 while (s->value <= 0)

4 1} 3 Cond_wait(&s->cond, &s->lock);
4 s->value--;
5 Mutex_unlock(&s->lock);

. . 6
Atomic operation / ;

Semaphores Implementation

Build semaphores using locks and condition variables

Any critical section should require locking

Signal and Wait on condition

Don’t maintain the invariant that the value of the semaphore, when
negative, reflects the number of waiting threads

API Our implementation

void Zem_wait(Zem t *s) {
1 Iint sem_wait(sem_t *s){

7 s->value == 1 1 Mutex_lock(&s->lock);
3 waitif s->value <0 2 while (s->value <= 0y U¢Pe =
4} 3 Cond wait(&s->cond, &s->lock);
4 s->value--;
5 Mutex_unlock(&s->lock);

. . 6
Atomic operation / ;

13

Value

Thread 0O

State

Thread 1

State

12

State

13

Value

Thread 0O

State

Thread 1

State

12

State

Running

Ready

Ready

13

Value | Thread O State Thread 1 State 12 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping

Acquires lock Running

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping

Acquires lock Running

1 Increments zem Running

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping

Acquires lock Running

1 Increments zem Running
1 Wakes up thread T1 Running Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping
Acquires lock Running
1 Increments zem Running
1 Wakes up thread T1 Running Ready
Condition wait will return once it Ready

gets lock

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping
Acquires lock Running
1 Increments zem Running
1 Wakes up thread T1 Running Ready
Condition Wgaei’ig/vlicl)lcriturn once it Ready
1 zem_post() returns Running Ready

13

Value | Thread O State Thread 1 State T2 State
1 Running Ready Ready
1 call zem_wait() Running Ready Ready
0 zem_wait() retruns Running Ready Ready
0 (crit set: begin) Running Ready Ready
0 Interrupt; Switch — T1 Ready Running Ready
0 Ready | call zem_wait() Running Ready
0 Ready | (zem <= 0)—sleep sleeping Ready
0 Running | Switch = T2 sleeping Running
0 Call zem_wait() Running
0 (zem<0) -> Sleep Sleeping
0 (crit sect: end) Running sleeping Switch —> T1 Sleeping
0 call sem_post() Running sleeping
Acquires lock Running
1 Increments zem Running
1 Wakes up thread T1 Running Ready
Condition Wgaei’ig/vlicl)lcriturn once it Ready
1 zem_post() returns Running Ready
0 Zem = zem - 1 Running

13

Another Implementation ...

typedef struct {

int value;

struct process *list;
} semaphore;

wait (semaphore *S) {
S—>value——;
if (S->value < 0) {
add this process to S->1ist;
block();

}

signal (semaphore *S) {
S—->value++;
if (S->value <= 0) {
remove a process P from S->1list;
wakeup (P) ;

14

Concurrency Bugs

Atomicity I Order Deadlock B Other

MySQL Apache Mozilla OpenOffice

Types of bugs in 4 major projects from 500K bug reports

15

Concurrency

SUgs — Atomicity

16

Concurrency

SUgs — Atomicity

MySQL bug ...

16

Concurrency Bugs — Atomicity

MySQL bug ...

Thread1::

1
2
3
A
5
6

(thd->proc_info)}{
fouts(thd->proc_info, ...);

;

16

Concurrency Bugs — Atomicity

MySQL bug ...

1
2
3
A
5
6

Thread1:: 8 Thread?2::
(thd->proc_info)}{ 9 thd->proc_info = NULL;

fouts(thd->proc_info, ...);

;

16

Concurrency Bugs — Atomicity

MySQL bug ...

Thread1:: 8 Thread?2::
(thd->proc_info)}{ 9 thd->proc_info = NULL;

1
2
3 .
4 fputs(thd->proc_info, ..);
5 ..
6 }

* |s this problematic?

16

Concurrency Bugs — Atomicity

MySQL bug ...

1
2
3
A
5
6

Thread1:: 8 Thread?2::
(thd->proc_info)}{ 9 thd->proc_info = NULL;

fouts(thd->proc_info, ...);

;

* Yes, else we wouldn't be discussing ...

16

Concurrency Bugs — Atomicity

MySQL bug ...

1
2
3
A
5
6

Thread1:: 8 Thread?2::
(thd->proc_info)}{ 9 thd->proc_info = NULL;

fouts(thd->proc_info, ...);

;

e How?

16

Concurrency Bugs — Atomicity

1 pthread_mutex_t lock = 1 Thread2::

PTHREAD MUTEX_INITIALIZER; 2 pthread_mutex_|lock(&lock);

9 3 thd->proc_info = NULL;

3 Thread1:: 4 pthread_mutex_unlock(&lock);

4 pthread_mutex_lock(&lock);
5 if(thd->proc_info){

6 ..

/ fputs(thd->proc_info, ...);
8 ..

9}

10 pthread_mutex_unlock(&lock);
17

Concurrency Bugs — Atomicity

Simple Solution

1 pthread_mutex_t lock =
PTHREAD MUTEX_INITIALIZER;
2

3 Thread1::

4 pthread_mutex_lock(&lock);
5 if(thd->proc_info){

o ..

/ fputs(thd->proc_info, ..);

8 ..

9}

10 pthread_mutex_unlock(&lock);

1 Thread2::

2 pthread_mutex_lock(&lock),
3 thd->proc_info = NULL;
4 pthread_mutex_unlock(&lock),

17

Concurrency Bugs — Order Violation

1 Thread1:: 6 ThreadZ:;

2 void init(){ 7 void mMain(...){

3 mThread = 8 mState = mThread->State
PR_CreateThread(mMain, ...); 9}

4}

5

18

Concurrency Bugs — Order Violation

Mozilla bug ...
1 Thread1:: 6 ThreadZ:;
2 void init(){ / void ml\/leim(...){
3 mThread = 8 mState = mThread->5tate
PR_CreateThread(mMain, ...); 9}
4}

5

18

Concurrency Bugs — Order Violation

Mozilla bug ...
1 Thread1:: 6 ThreadZ:;
2 void init(){ 7 void mMain(...){
3 mThread = 8 mState = mThread->State
PR_CreateThread(mMain, ...); 9}
4}
5

* |s this problematic?

18

Concurrency Bugs — Order Violation

Mozilla bug ...
1 Thread1:: 6 ThreadZ:;
2 void init(){ 7 void mMain(...){
3 mThread = 8 mState = mThread->State
PR_CreateThread(mMain, ...); 9}
4}
5

* Yes, else we wouldn't be discussing ...

18

Concurrency Bugs — Order Violation

Mozilla bug ...
1 Thread1:: 6 ThreadZ:;
2 void init(){ 7 void mMain(...){
3 mThread = 8 mState = mThread->State
PR_CreateThread(mMain, ...); 9}
4}
5

e How?

18

Concurrency

Sugs — Order Violation

19

Concurrency Bugs — Order Violation

1 pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER,;
2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER,;
3 int mtinit =0,

19

Concurrency Bugs — Order Violation

1 pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER,;
3 int mtinit =0,

1 Thread 1::
2 void init(){
3 ..
MmThread = PR_CreateThread(mMain,...);

pthread_mutex_lock(&mtLock);
mtinit =1,
9 pthread_cond_signal(&mtCond);
10 pthread_mutex_unlock(&mtLock);
11 ..
123

A
5
6 //signal that the thread has been created.
-
3

19

Concurrency Bugs — Order Violation

1 pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER,;

3 int mtinit = 0;
20 Thread2::

1 Thread 1:: 271 void mMain(...X
2 void init({
3 .. // wait for the thread to be initialized
4 mThread = PR _CreateThread(mMain,...);
5 22 pthread_mutex_|lock(&mtLock);
6 //signal that the thread has been created. 23 while(mtinit == 0)
/7 pthread_mutex_lock(&mtLock); 24 pthread_cond_wait(&mtCond,
8 mtinit=1; &mtlLock);
9 pthread_cond_signal(&mtCond); 25
10 pthread_mutex_unlock(&mtLock); pthread_mutex_unlock(&mtLock);
11 .. 26 mState = mThread->State;
12} }

19

Concurrency

SUJS —

Deadlock

20

Concurrency

Thread 1
Lock(LT);
Lock(L2);

SUJS —

Deadlock

20

Concurrency

Thread 1
Lock(LT);
Lock(L2);

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

20

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T1 gets Lock L1

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T1 gets Lock L2

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T1 completes critical section

Concurrency

Thread 1
Lock(LT);
Lock(L2);

e (Context Switch

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

20

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T2 gets Lock L2 and Lock L1

Concurrency

Thread 1
Lock(LT);
Lock(L2);

 Works :)

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

20

Concurrency

SUJS —

Deadlock

21

Concurrency

Thread 1
Lock(LT);
Lock(L2);

SUJS —

Deadlock

21

Concurrency

Thread 1
Lock(LT);
Lock(L2);

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

21

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T1 gets Lock L1

Concurrency

Thread 1
Lock(LT);
Lock(L2);

e (Context Switch

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

21

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

* Thread T2 gets Lock L2

Concurrency

Thread 1
Lock(LT);
Lock(L2);

e (Context Switch

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

21

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

e Thread T1 waits since it doesn’t have Lock 2

Concurrency

Thread 1
Lock(LT);
Lock(L2);

e (Context Switch

SUJS —

Deadlock

Thread 2

Lock(L2);
Lock(LT);

21

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

e TJhread t2 waits since it doesn’t have Lock

Concurrency Bugs — Deadlock

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

e TJhread t2 waits since it doesn’t have Lock

Concurrency Bugs — Deadlock

Dependency Graphs

Thread 1 Thread 2
Lock(LT); Lock(L2);
Lock(L2); Lock(LT);

@ HOldS .
q Lock 1
Lock 2 B
Holds

Wanted by
Wanted by

22

Deadlocks Occur

23

VWhy Deadlocks Occur

 Encapsulation

23

VWhy Deadlocks Occur

 Example: Java vector addAll method

23

Deadlocks Occur

e+ V1=[1 4,5]

23

Deadlocks Occur

e V2 =06, 7, 8]

23

Deadlocks Occur

e V1.addAll(V2) —>[1,4, 5,6, 7, 8]

23

VWhy Deadlocks Occur

e |[f addAll is multithreaded & assuming it locks V1,
V2 In that order

23

VWhy Deadlocks Occur

e |f some thread all calls V2.add(V1), we have a
deadlock!

23

VWhy Deadlocks Occur

 Complex dependecies

23

VWhy Deadlocks Occur

e Virtual memory system calls filesystem

23

VWhy Deadlocks Occur

* Encapsulation
e Example: Java vector addAll method
e V1=1[1,45
e V2=16,7,8
 V1.addAll(V2)—>[1,4,5, 6, 7, 8]
e |f addAll is multithreaded & assuming it locks V1,
V2 In that order
* |f some thread all calls V2.add(V1), we have a
deadlock!
« Complex dependecies
e Virtual memory system calls filesystem
e Filesystem calls virtual memory

23

Concurre

eper

SUJS —

ncy Graphs

Deadlock

24

Concurre

Depen

Condition Description

de

SUJS —

ncy Graphs

Deadlock

24

Concurrency Bugs — Deadlock
Dependency Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources

24

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources

No Resources cannot be forcibly removed from
preemption |threads that are holding them.

24

Concurrency Bugs — Deadlock
cy Graphs

Depender

Condition Description
Mutual Threads claim exclusive control of resources that
Exclusion they require.
Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources
No Resources cannot be forcibly removed from
preemption |threads that are holding them.
There exists a circular chain of threads such that
Circular wait | each thread holds one or more resources that are
being requested by the next thread in the chain

24

Concurre

eper

SUJS —

ncy Graphs

Deadlock

25

Concurre

Depen

Condition Description

de

SUJS —

ncy Graphs

Deadlock

25

Concurrency Bugs — Deadlock
Dependency Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources

25

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources

No Resources cannot be forcibly removed from
preemption |threads that are holding them.

25

Concurre

Depen

de

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that

Exclusion they require.

Hold-and- Threads hold resources allocated to them while

wait waiting for additional resources

No Resources cannot be forcibly removed from

preemption |threads that are holding them.

. There exists a circular chain of threads such that

Circular

wait each thread holds one or more resources that are
being requested by the next thread in the chain

25

Preventing Circular Wait

Thread 1 |
Lock(L1): Deadlock Version

Lock(L2);

Thread 2

Lock(L2);
Lock(L1);

20

Preventing Circular Wait

* Provide a total ordering of lock acquisition

Thread 1 | Thread 2
Lock(L1) Deadlock Version Lock(L2);

Lock(L2); Lock(LT);

20

Preventing Circular Wait

Thread 1 |
Lock(L1): Deadlock Version

Lock(L2);

Thread 2

Lock(L2);
Lock(L1);

20

Preventing Circular Wait

Thread 1

Lock(LT);
Lock(L2);

Thread 1

Lock(LT);
Lock(L2);

Deadlock Version

Non-deadlock Version

Thread 2

Lock(L2);
Lock(L1);

Thread 2

Lock(L1);
Lock(L2);

20

Preventing Circular Wait

27

Preventing Circular Wait

* Provide a total ordering of lock acquisition

27

Preventing Circular Wait

27

Preventing Circular Wait

e Define a function do_something which works correct
even If two threads call it as:

27

Preventing Circular Wait

e T1— do_something (L1, L2) and

27

Preventing Circular Wait

e 12— do_something (L2, L1)

27

Preventing Circular Wait

e 12— do_something (L2, L1)

do something(mutex t *m1, mutex t *m?2)

27

Preventing Circular Wait

e 12— do_something (L2, L1)

do something(mutex t *m1, mutex t *m?2)

if(m1>m2)
{// grab locks in high-to-low address order
pthread_mutex_lock(m1);
pthread_mutex_lock(m2); }
else {
pthread_mutex_lock(m2);
pthread_mutex_lock(m1); }
1 1=

// Code assumes that m M2 (it is not the same lock)

27

Concurre

eper

SUJS —

ncy Graphs

Deadlock

28

Concurre

Depen

Condition Description

de

SUJS —

ncy Graphs

Deadlock

28

Concurrency Bugs — Deadlock
Dependency Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources

28

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources

No Resources cannot be forcibly removed from
preemption |threads that are holding them.

28

Concurrency Bugs — Deadlock
cy Graphs

Depender

Condition Description
Mutual Threads claim exclusive control of resources that
Exclusion they require.
Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources
No Resources cannot be forcibly removed from
preemption |threads that are holding them.
There exists a circular chain of threads such that
Circular wait | each thread holds one or more resources that are
being requested by the next thread in the chain

28

“reventing Hold and VWalt

Thread 1 |
Lock(L1): Deadlock Version

Lock(L2);

Thread 2

Lock(L2);
Lock(L1);

29

“reventing Hold and VWalt

* Acquire all locks at once atomically

Thread 1 |
Lock(L1): Deadlock Version

Lock(L2);

Thread 2

Lock(L2);
Lock(L1);

29

“reventing Hold and VWalt

Thread 1 |
Lock(L1): Deadlock Version

Lock(L2);

Thread 2

Lock(L2);
Lock(L1);

29

Thread 1
Lock(LT);
Lock(L2);

Thread 1
Lock(ALL)
Lock(LT);
Lock(L2);

Unlock(ALL);

“reventing Hold and VWalt

Deadlock Version

Non-deadlock Version

Thread 2
Lock(L2);
Lock(L1);

Thread 2
Lock(ALL)
Lock(L1);
Lock(L2);

Unlock(ALL)

29

* Acquire all locks at once atomically

Thread 1
Lock(ALL)
Lock(LT);
Lock(L2);

Unlock(ALL);

“reventing Hold and VWalt

Non-deadlock Version

Thread 2
Lock(ALL)
Lock(L1);
Lock(L2);

Unlock(ALL)

30

* Acquire all locks at once atomically

e Cons

Thread 1
Lock(ALL)
Lock(LT);
Lock(L2);

Unlock(ALL);

“reventing Hold and VWalt

Non-deadlock Version

Thread 2
Lock(ALL)
Lock(L1);
Lock(L2);

Unlock(ALL)

30

* Acquire all locks at once atomically

“reventing Hold and VWalt

* Requires us to know which all locks will be required
ahead of time

Thread 1
Lock(ALL)
Lock(LT);
Lock(L2);

Unlock(ALL);

Non-deadlock Version

Thread 2
Lock(ALL)
Lock(L1);
Lock(L2);

Unlock(ALL)

30

* Acquire all locks at once atomically

“reventing Hold and VWalt

 Reduction of concurrency

Thread 1
Lock(ALL)
Lock(LT);
Lock(L2);

Unlock(ALL);

Non-deadlock Version

Thread 2
Lock(ALL)
Lock(L1);
Lock(L2);

Unlock(ALL)

30

Concurre

eper

SUJS —

ncy Graphs

Deadlock

31

Concurre

Depen

Condition Description

de

SUJS —

ncy Graphs

Deadlock

31

Concurrency Bugs — Deadlock
Dependency Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Concurre
Depende

Ncy Bugs — Deadlock

ncy Graphs

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources

31

Concurrency Bugs — Deadlock
cy Graphs

Depender

Condition Description

Mutual Threads claim exclusive control of resources that
Exclusion they require.

Hold-and- | Threads hold resources allocated to them while
wait waiting for additional resources

No Resources cannot be forcibly removed from
preemption | threads that are holding them.

31

Concurrency Bugs — Deadlock
cy Graphs

Depender

Condition Description
Mutual Threads claim exclusive control of resources that
Exclusion they require.
Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources
No Resources cannot be forcibly removed from
preemption | threads that are holding them.
There exists a circular chain of threads such that
Circular wait | each thread holds one or more resources that are
being requested by the next thread in the chain

31

Cre-emption

Thread 1 | Thread 2
Lock(L1) Deadlock Version Lock(L2);
Lock(L2); Lock(L1);

Non-deadlock Version

1 top:

2 lock(L1);

3 If(tryLock(L2) ==-1 X
4 unlock(L1);

5 top;
6 }

Cre-emption

Thread 1 | Thread 2
Lock(L1); Deadlock Version Lock(L2);
Lock(L2); Lock(LT);
Non-deadlock Version
1 top:
2 lock(L1);

3 If(tryLock(L2) ==-1 A
4 unlock(L1);

5 top,
6

}

Cre-emption

* Livelock: Both threads running this sequence repeatedly

Thread 1 | Thread 2
Lock(L1); Deadlock Version Lock(L2);
Lock(L2); Lock(LT);
Non-deadlock Version
1 top:
2 lock(L1);

3 If(tryLock(L2) ==-1 A
4 unlock(L1);
5
6

top;

}

Cre-emption

e How to solve?

Thread 1 | Thread 2
Lock(L1); Deadlock Version Lock(L2);
Lock(L2); Lock(LT);
Non-deadlock Version
1 top:
2 lock(L1);

3 If(tryLock(L2) ==-1 A
4 unlock(L1);

5 top,
6

}

Cre-emption

 Add random delay

Thread 1 | Thread 2
Lock(L1); Deadlock Version Lock(L2);
Lock(L2); Lock(LT);
Non-deadlock Version
1 top:
2 lock(L1);

3 If(tryLock(L2) ==-1 A
4 unlock(L1);

5 top,
6

}

Concurrency Bugs — Deadlock
cy Graphs

Depender

Condition Description
Mutual Threads claim exclusive control of resources that
Exclusion |they require.
Hold-and- Threads hold resources allocated to them while
wait waiting for additional resources
No Resources cannot be forcibly removed from
preemption |threads that are holding them.
There exists a circular chain of threads such that
Circular wait | each thread holds one or more resources that are
being requested by the next thread in the chain

34

Prevention — Mutual exclusion

35

Prevention — Mutual exclusion

e Use atomic instructions!

35

Prevention — Mutual exclusion

Use atomic instructions!

1 int CompareAndSwap(int *address, int expected, int new){
f(*address == expected){

*address = new;

return 1, // success

}

return O;

~N O U W N

35

Prevention — Mutual exclusion

e Use atomic instructions!

1 int CompareAndSwap(int *address, int expected, int new){
f(*address == expected){

*address = new;

return 1, // success

}

return O;

}

 Use above code to implement atomic increment: x = x+Kk

~N O U W N

35

Prevention — Mutual exclusion

e Use atomic instructions!

1 int CompareAndSwap(int *address, int expected, int new){
f(*address == expected){

*address = new;

return 1, // success

}

return O;

}

 Use above code to implement atomic increment: x = x+Kk

~N O U W N

1 void Atomicincrement(int *value, int amount){
..Fill Here
5}

35

Prevention — Mutual exclusion

e Use atomic instructions!

1 int CompareAndSwap(int *address, int expected, int new){
2 If(*address == expected){

3 *address = new;

4 return 1, // success

>)

6 return O;

7}

 Use above code to implement atomic increment: x = x+Kk

1 void Atomicincrement(int *value, int amount){

2 dof

3 intold = *value;

4 Iwhile(CompareAndSwap(value, old, old+amount)==0);
>}

36

Prevention — Mutual exclusion

e List insertion using atomic instructions

37

Prevention — Mutual exclusion

e List insertion using atomic instructions

1 void insert(int value){

2 node_t*n=malloc(sizeof(node_t));
3 assert(n!=NULL)

4 n->value =value;

5 n->next = head;

6 head =n;

7}

37

Prevention — Mutual exclusion

e List insertion using atomic instructions

1 void insert(int value){

2 node_t*n=malloc(sizeof(node_t));
3 assert(n!=NULL)

4 n->value =value;

5 n->next = head;

6 head =n;

7}

e \Where is the race condition?

37

Prevention — Mutual exclusion

e Mutex based solution

38

Prevention — Mutual exclusion

Mutex based solution

1 void insert(int value){

node_t * n = malloc(sizeof(node_t));
assert(n!=NULL)

n->value = value ;

lock(listlock); // begin critical section
n->next = head;

head =n;

unlock(listlock) ; //end critical section

O 00 4 O U1 B~ W DN

38

Prevention — Mutual exclusion

e Atomic instruction based?

HINT

1 int CompareAndSwap(int *address, int expected, int new){
2 If(*address == expected){

3 *address = new;

4 return 1;// success

>}

6 return O;

7}

Prevention — Mutual exclusion

e Atomic instruction based?

HINT

1 int CompareAndSwap(int *address, int expected, int new){
if(*address == expected){

*address = new;

return 1; // success

}

return O;

}

~N Oy U WD

1 void insert(int value) {

node_t *n = malloc(sizeof(node_t));

assert(n = NULL);

n->value = value;

do {

n->next = head;

}while (CompareAndSwap(&head, n->next, n));

0 N O Ul M WN)

39

Deadlock Avoidance via Scheduling

Only one of T1 & T2 will
run at a given time ...

40

Dead
e (Globa

ock Avoldance v

kKnowledge about whic

IS needed ahead of time

a Scheduling

N threads might be acquired

Only one of T1 & T2 will
run at a given time ...

40

Deadlock Avoidance via Scheduling

 Assume 2 processors and 4 threads and following lock
requirements. How will you schedule to avoid deadlocks?

Only one of T1 & T2 will
run at a given time ...

40

Deadlock Avoidance via Scheduling

* Hint: you can think serial!

Only one of T1 & T2 will
run at a given time ...

40

Deadlock Avoidance via Scheduling

* Hint: you can think serial!

T1 12 13 T4
L1 yes yes no no
L2 yes yes yes no

Only one of T1 & T2 will
run at a given time ...

Deadlock Avoidance via Scheduling

* Hint: you can think serial!

T1 12 13 T4

L1 yes yes no no

L2 yes yes yes no
CPU2 Only one of T1 & T2 will

CPU1 run at a given time ...

Deadlock Avoidance via Scheduling

41

Deadlock Avoidance via Scheduling

L1

yes

yes

yes

Nno

L2

yes

yes

Ves

Nno

41

Deadlock Avoidance via Scheduling

L1

yes

yes

yes

Nno

L2

yes

yes

Ves

Nno

CPU2

41

