# Operating Systems Lecture 29: RAID continued

Nipun Batra Nov 15, 2018

#### RAID-1: Mirroring

Keep two copies of all data.



#### Assumptions

#### Assume disks are fail-stop.

- they work or they don't
- we know when they don't

#### Tougher Errors:

- latent sector errors
- silent data corruption

# 2 disks

| Disk 0 | Disk 1 |  |
|--------|--------|--|
| 0      | 0      |  |
| 1      | 1      |  |
| 2      | 2      |  |
| 3      | 3      |  |

#### 4 disks

| Disk 0 | Disk 1 | Disk 2 | Disk 3 |
|--------|--------|--------|--------|
| 0      | 0      | 1      | 1      |
| 2      | 2      | 3      | 3      |
| 4      | 4      | 5      | 5      |
| 6      | 6      | 7      | 7      |

#### 4 disks

| Disk 0 | Disk 1 | Disk 2 | Disk 3 |
|--------|--------|--------|--------|
| 0      | 0      | 1      | 1      |
| 2      | 2      | 3      | 3      |
| 4      | 4      | 5      | 5      |
| 6      | 6      | 7      | 7      |

How many disks can fail?

What is capacity?

- What is capacity?
  - N/2 \* C

- What is capacity?
  - N/2 \* C
- How many disks can fail?

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D

| Disk 0 | Disk 1 | Disk 2 | Disk 3 |
|--------|--------|--------|--------|
| 0      | 0      | 1      | 1      |
| 2      | 2      | 3      | 3      |
| 4      | 4      | 5      | 5      |
| 6      | 6      | 7      | 7      |

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D

| Disk 0 | Disk 1 | Disk 2 | Disk 3 |
|--------|--------|--------|--------|
| 0      | 0      | 1      | 1      |
| 2      | 2      | 3      | 3      |
| 4      | 4      | 5      | 5      |
| 6      | 6      | 7      | 7      |

- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D



- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D



- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D



- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D



- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D



- What is capacity?
  - N/2 \* C
- How many disks can fail?
  - 1 or N/2 (best case)
- Throughput?
  - Sequential write (N/2)\*S
  - Sequential read (N/2)\*S
  - Random write (N/2)\*R
  - Random read (N\*R)
- Latency
  - D

















Disk0 Disk1

O A A

1 B B CRASH!!!

2 A A

3 D T



#### H/W Solution

Problem: Consistent-Update Problem

Use non-volatile RAM in RAID controller.

## RAID-4 compared to RAID-1 and RAID-0



• Use parity disk.

• Use parity disk.

- Use parity disk.
- In algebra, if an equation has N variables, and N-1 are know, you can often solve for the unknown.

- Use parity disk.
- In algebra, if an equation has N variables, and N-1 are know, you can often solve for the unknown.

- Use parity disk.
- In algebra, if an equation has N variables, and N-1 are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.

- Use parity disk.
- In algebra, if an equation has N variables, and N-1 are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.

- Use parity disk.
- In algebra, if an equation has N variables, and N-1 are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.
- A failed disk is like an unknown in the equation.

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4 |
|---------|-------|-------|-------|-------|-------|
| Stripe: |       |       |       |       |       |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: |       |       |       |       |          |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 5     | 3     | O     | 1     |          |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 5     | 3     | O     | 1     | 9        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 5     | X     | O     | 1     | 9        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 5     | 3     | O     | 1     | 9        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 2     | 1     | 1     | X     | 5        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 2     | 1     | 1     | 1     | 5        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 3     | 0     | 1     | 2     | Χ        |
|         |       |       |       |       | (parity) |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4    |
|---------|-------|-------|-------|-------|----------|
| Stripe: | 3     | 0     | 1     | 2     | 6        |
|         |       |       |       |       | (parity) |

## Parity Functions

Which functions could we use to compute parity?

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

Disk0 Disk1 Disk2 Disk3 Disk4

Stripe: 00 01 10 11 (XOR(0,0,1,1), XOR(0,1,0,1))=00

(parity)

What is capacity?

- What is capacity?
  - (N-1) \* C

- What is capacity?
  - (N-1) \* C
- How many disks can fail?

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1
- Throughput?

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1
- Throughput?
  - Sequential write (N-1)\*S

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1
- Throughput?
  - Sequential write (N-1)\*S
  - Sequential read (N-1)\*S

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1
- Throughput?
  - Sequential write (N-1)\*S
  - Sequential read (N-1)\*S
  - Random read (N-1)\*R

- What is capacity?
  - (N-1) \* C
- How many disks can fail?
  - 1
- Throughput?
  - Sequential write (N-1)\*S
  - Sequential read (N-1)\*S
  - Random read (N-1)\*R
  - Random write?

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

Want to: Write 0 to Disk 1

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | O     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | O     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing



- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | O     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | O     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
  - Both wait to read and write Parity Disk

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | O     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
  - Both wait to read and write Parity Disk
  - R/2 throughput (independent of N)

|         | Disk0 | Disk1 | Disk2 | Disk3 | Disk4          |
|---------|-------|-------|-------|-------|----------------|
| Stripe: | 0     | 1     | 0     | 1     | XOR(0,1,0,1)=0 |
|         |       |       |       |       | (parity)       |

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
  - Both wait to read and write Parity Disk
  - R/2 throughput (independent of N)
- Latency for random write is 2D (2 parallel reads and 2 parallel writes)

#### RAID-5 (Improve Random Write Performance)



### RAID-5: Analysis

- 0a) What is capacity? (N-1) \* C
- 0b) How many disks can fail? 1
- Oc) Throughput? ???
- 0d) Latency? D for read and 2\*D for write

#### RAID-5: Throughput

What is steady-state throughput for

- sequential reads?
- sequential writes?
- random reads?
- random writes?

### RAID-5: Throughput

What is steady-state throughput for

```
- sequential reads? (N-1) * S
```

- sequential writes? (N-1) \* S
- random reads? N \* R
- random writes? N \* R / 4

### RAID-5: Throughput

What is steady-state throughput for

```
- sequential reads? (N-1) * S
```

- sequential writes? (N-1) \* S

- random reads? N \* R

- random writes? N\*R/4

|        | Reliability | Capacity |
|--------|-------------|----------|
| RAID-0 | 0           | C*N      |
| RAID-1 | 1           | C*N/2    |
| RAID-4 | 1           | N-1      |
| RAID-5 | 1           | N-1      |

|        | Read Latency | Write Latency |
|--------|--------------|---------------|
| RAID-0 | D            | D             |
| RAID-1 | D            | D             |
| RAID-4 | D            | 2D            |
| RAID-5 | D            | 2D            |

|        | Read Latency | Write Latency |
|--------|--------------|---------------|
| RAID-0 | D            | D             |
| RAID-1 | D            | D             |
| RAID-4 | D            | 2D            |
| RAID-5 | D            | 2D            |

but RAID-5 can do more in parallel

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-4 | (N-1)*S  | (N-1)*S   | (N-1)*R   | R/2        |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-4 | (N-1)*S  | (N-1)*S   | (N-1)*R   | R/2        |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

RAID-5 is strictly better than RAID-4

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

RAID-0 is always fastest and has best capacity. (but at cost of reliability)

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

RAID-5 better than RAID-1 for sequential.

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-5 | (N-1)*S  | (N-1)*S   | N*R       | N/4 * R    |

|        | Seq Read | Seq Write | Rand Read | Rand Write |
|--------|----------|-----------|-----------|------------|
| RAID-0 | N * S    | N * S     | N * R     | N * R      |
| RAID-1 | N/2 * S  | N/2 * S   | N * R     | N/2 * R    |
| RAID-5 | (N-1)*S  | (N-1)*S   | N * R     | N/4 * R    |

RAID-1 better than RAID-4 for random write.

# Summary

Many engineering tradeoffs with RAID. (capacity, reliability, different types of performance).

H/W RAID controllers can handle crashes easier.

Transparent, deployable solutions are popular.