Administrative

e Slides and Video up on website
* Project claritication up on website
* Demo or Video - both need to be shown in class
 What time slots?
 Own laptops”? Environment installed?
* Native or VM
e Linux
* Python 3.x from Anaconda
« GCC, GDB, htop, etc.
* Homework will be handed out by tomorrow, due on

Saturday noon

Operatir

| ecture 3:

Nipun Batra
Aug 7, 2018

1The

g Systems

Process AP

Process States

Process States

Scheduled
4—

———
Descheduled

/O initiat\

/O done

Blocked

Process States

B Running
B Ready
- Blockead

PO
0 1 2 3 4 5 0

Time

Process States

B Running
B Ready
- Blockead

PO

Revisiting process-run and Randomisation

Project
idea

—Revisiting process-run and

Rand

omisation

® www.pythontutor.com

)

—a

Here is a Python example:

Project
J Python 2.7
. def listSum(numbers):
I ea if not numbers:

return 0
else:
(f, rest) = numbers
- return f + listSum(rest)

myList = (1, (2, (3, None)))
total = listSum(myList)

Edit this code

line that has just executed
== next line to execute

<Back Step 20 of 22 Forward >

Python Tutor by Philip Guo. Support with a small donation.

Work [E= New folder [New folder jl Google Analytics /0| Outlook Web App & imac - Google Sear...

Frames

Global frame

listSum

myList

listSum
numbers
f 1

rest

listSum
numbers
f 2

rest

listSum
numbers
f 3
rest [None

Return 3
value

Objects

function
listSum(numbers)

tuple tuple tuple

0 1 0 1
L1 7| 2| «t7| 3 | None

Process AP

- Create process:
* Double click
* Run on command line
* Destroy processes:
* Jask manager
« Command line
- Wait:
* Don't run process till other process completes
e Status:
* How long run, what state it is in
* Does top, ps give us this info”
e Misc.:
* Suspend

Process AP

- Create process:
e fork()
e exec()

- Wait:
e wait()

The fork() System Call

> man fork

BSD System Calls Manual FORK(2)

fork —— create a new process

SYNOPSIS
#include <unistd.h>

pild
fork(void);

DESCRIPTION
fork() causes creation of a new process. The new process (child process) is an exact copy of the calling
process (parent process) except for the following:

0 The child process has a unique process ID.
o The child process has a different parent process ID (i.e., the process ID of the parent process).

The child process has its own copy of the parent's descriptors. These descriptors reference the
same underlying objects, so that, for instance, file pointers in file objects are shared between the
child and the parent, so that an lseek(2) on a descriptor in the child process can affect a subse-
quent read or write by the parent. This descriptor copying is also used by the shell to establish
standard input and output for newly created processes as well as to set up pipes.

o The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUES
Upon successful completion, fork() returns a value of @ to the child process and returns the process ID of the
child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no child
process is created, and the global variable errno is set to indicate the error.

fork() cemo

10

fork() demo

1. fork_demo_1.c : Get the PID of current process

10

fork() demo

2. tork_demo_2.c : Get the PID of parent process

10

fork() cemo

3. Use ps (man ps to find more) to find what's the parent
process”?

10

fork() cemo

4. See the above in Activity Monitor

10

fork() cemo

5. tork_demo_3.c: Add sleep to view more detalls in
Activity Monitor

10

fork() demo

6. fork_demo_4.c: Use fork() to create child process

10

fork() cemo

/. tfork_demo_5.c: Add sleep to above and find these
processes on Activity Monitor

10

fork() demo

1.

o1 A

~N O

fork demo 1.c: Gef
. fork demo 2.c : Gef

W N

' the P
' the P

Jse ps (man ps to f
process”

Nnd Mo

D of current process
D of parent process

e) to find what's the parent

See the above in Activity Monitor

Activity Monitor

. fork_demo_3.c: Add sleep to view more detalls In

fork_demo_4.c: Use fork() to create child process

. fork_demo_5.c: Add sleep to above and find these

processes on Activity Monitor
Show the same using ps command

10

fork() demo

1.

fork_ demo 1.c : Get the Pl

2. fork demo 2.c : Get the PI

0

S

~N O

Jse ps (man ps to find mo
Drocess?

D of current process
D of parent process

re) to find what's the parent

See the above in Activity Monitor

. fork_demo_3.c: Add sleep

Activity Monitor

to view more details Iin

fork_demo_4.c: Use fork() to create child process

. fork_demo_5.c: Add sleep

to above and find these

processes on Activity Monitor

. Show the same using ps command

1. (ps -p 42693 -0 pid,ppid)

10

fork() cemo

9. Fun: Keep finding parent process

10

The fork() System Call

Parent

main(){
fork()

11

The fork() System Call

Parent

melt.ih.(){
fork()

Code

Static
data

Heap
Stack

Address
Space of
Parent

11

The fork() System Call

Parent

main(){
fork()

Code

Static
data

Heap
Stack

Address
Space of
Parent

12

The fork() System Call

Parent

main(){
fork()

Code

Static data

Heap
Stack

Address
Space of
Parent

13

The fork() System Call

Address Code
data Space of

Static Address

data Space of
Parent Heap Parent

Stack

Child

main(){
fork()

14

The fork() System Call

Address Code
data Space of

Static Address

data Space of
Parent Heap Parent

Stack

Child

main(){
fork()

15

fork() Code Usage in Linux repo

& > C & GitHub, Inc. [US] | https://github.com/torvalds/linux/search?q=fork&unscoped_qg=fork

=" Apps [Work [New folder [5 New folder 3| Google Analytics ()| Outlook Web App & imac - Google Sear...

Pull requests Issues Marketplace Explore

Code 562 562 code results in torvalds/linux or view all results on GitHub Sort: Best match v

Commits 2K

tools/testing/selftests/powerpc/benchmarks/.gitignore

Issues LL Showing the top match Last indexed on Apr 8
gettimeofday
Languages context_switch
fork
C 418 exec_target
Unix Assembly 44 mmap_bench
futex_bench
Text 32 null_syscall
Shell 19
reStructuredText 16
Makefile 5 tools/testing/selftests/ftrace/test.d/trigger/trigger-filter.tc Shell
Showing the top two matches Last indexed on Nov 18, 2017
C++ 3
echo "event tracing is not supported"
Objective-C 2 .
exit_unsupported
Roff 1 fi
Perl 1

if [! -f events/sched/sched_process_fork/trigger]; then

echo 'traceoff if child_pid == @' > events/sched/sched_process_fork/trigger
(echo "forked")
if [“cat tracing_on® -ne 1]; then

fail "traceoff trigger on sched_process_fork did not work"

Advanced search Cheat sheet

tools/testing/selftests/powerpc/tm/tm-fork.c c

The wait() System Call

Run fork_demo_4 again. Different order?
> man 2 fork

WAIT(2) BSD System Calls Manual WAIT(2)

NAME

wait, wait3, wait4, waitpid — wait for process termination

SYNOPSIS

#include <sys/wait.h>
id
ait(int xstat loc);
id
ait3(int xstat_loc, int options, struct rusage *rusage);

id

wait4(pid_t pid, int xstat loc, int options, struct rusage xrusage);
1o g

waitpid(pid_t pid, int xstat_loc, int options);

DESCRIPTION

The wait() function suspends execution of its calling process until stat_loc information is available for a
terminated child process, or a signal is received. On return from a successful wait() call, the stat loc area
contains termination information about the process that exited as defined below.

The wait4() call provides a more general interface for programs that need to wait for certain child processes,
that need resource utilization statistics accumulated by child processes, or that require options. The other
wait functions are implemented using wait4().

The pid parameter specifies the set of child processes for which to wait. If pid is -1, the call waits for
any child process. If pid is @, the call waits for any child process in the process group of the caller. If

17

The wait() System Call

> man 2 fork

Wait? Why does man fork not work®

& C' @& Secure | https://linux.die.net/man/1/

22 Apps EJ Work [ES New folder E5 New folder .3l Google Analytics || Outlook Web App & imac - Google Sear...

Section 1: user commands - Linux man

P Oalias(1)

1 create quick scripts to run Olaunch
dlenet Odesktop(1)

Site Search add programs to desktop environment
Oinstall(1)
Library decentralised software installation system
linux docs Olaunch(1)
linux man pages download/run programs by URL
page load time Ostore(1)
Toys) manage implementation cache
world sunlight
moon phase Ostore-secure-add(1)
trace explorer add implementation to system cache
& 3ddesk(1)
activates 3D-Desktop, 3D desktop switcher
3ddeskd(1)

starts daemon for 3D-Desktop, 3D desktop switcher

< C' @ Secure | https://linux.die.net/man/2/

i:f Apps [Work

L4

die.net

Site Search

Library
linux docs
linux man pages
page load time

Toys
world sunlight
moon phase
trace explorer

-

ew folder ew folder _j Google Analytics || Outlook Web App & imac - Google
3 New fold E3 New fold G le Analyti Outlook Web A Gi G |

Section 2: system calls - Linux man

accept(2)

accept connection on socket
accept4(2)

accept connection on socket
access(2)

check real user's permissions for file
acct(2)

switch process accounting on/off
add key(2)

add key to kernel's key management facility
adjtimex(2)

tune kernel clock
afs_syscall(2)

unimplemented system calls
alarm(2)

set alarm clock for delivery of signal
alloc_hugepages(2)

allocate/free huge pages
arch prctl(2)

18

The wait() System Call

CA~)

The difference is that the wait() in <sys/wait.h> is the one you should use.

From the wait(3) man page:

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int xstatus);

The wait function isn't defined by the ISO C standard, so a conforming C implementation isn't
allowed to declare it in <stdlib.h> (because it's legal for a program to use the name wait for its
own purposes). gcc with glibc apparently does so in its default non-conforming mode, but if you
invoke it with gcc -ansi -pedantic or gcc -std=c99 -pedantic , it doesn't recognize the
function name wait orthe type pid_t .

19

The wait() System Call

1. wait demo 1.c :wait for child to exit

&, Thedifference is that the wait() in <sys/wait.h> is the one you should use.

2 From the wait(3) man page:

\ 4 SYNOPSIS
#include <sys/types.h>
V #include <sys/wait.h>

pid_t wait(int xstatus);

The wait function isn't defined by the ISO C standard, so a conforming C implementation isn't
allowed to declare itin <stdlib.h> (because it's legal for a program to use the name wait for its
own purposes). gcc with glibc apparently does so in its default non-conforming mode, but if you

invoke it with gcc -ansi -pedantic or gcc -std=c99 -pedantic , it doesn't recognize the
function name wait orthe type pid_t .

19

The wait() System Call

2. But wait, which wait to use?

&, Thedifference is that the wait() in <sys/wait.h> is the one you should use.

2 From the wait(3) man page:

\ 4 SYNOPSIS
#include <sys/types.h>
V #include <sys/wait.h>

pid_t wait(int xstatus);

The wait function isn't defined by the ISO C standard, so a conforming C implementation isn't
allowed to declare itin <stdlib.h> (because it's legal for a program to use the name wait for its
own purposes). gcc with glibc apparently does so in its default non-conforming mode, but if you

invoke it with gcc -ansi -pedantic or gcc -std=c99 -pedantic , it doesn't recognize the
function name wait orthe type pid_t .

19

The wait() System Cal

20

The wait() System Cal

1. wait demo 1.c :wait for child to exit

20

The wait() System Cal

2. But wait, which wait to use”

20

The wait() System Cal

3. Run wait demo 2.c

20

The wait() System Cal

4. Run wait_demo_3.c and find out NULL/O,\O’

20

The exec() System Cal

> man 3 exec

execvp(const char xfile, char xconst argv :

int
execvP(const char xfile, const char xsearch path, char xconst

DESCRIPTION
The exec family of functions replaces the current process image with a new process image.] The functions

UcSCT LUCU 1l UIILS liidiiua L payc al© T1TUINL=CUS TUI LHE TUNCULUIT €ACLVENZ)/« \oCC LIIC lllaiiual page for execve(2)

for detailed information about the replacement of the current process.)
The initial argument for these functions is the pathname of a file which is to be executed.

The const char xarg® and subsequent ellipses in the execl(), execlp(), and execle() functions can be thought
of as arg@, argl, ..., argn. Together they describe a list of one or more pointers to null-terminated strings
that represent the argument list available to the executed program. The first argument, by convention, should

point to the file name associated with the file being executed. The list of arguments must be terminated by a
NULL pointer.

The execv(), execvp(), and execvP() functions provide an array of pointers to null-terminated strings that
represent the argument list available to the new program. The first argument, by convention, should point to
the file name associated with the file being executed. The array of pointers must be terminated by a NULL
pointer.

21

The exec() system Call

22

The exec() system Call

1.

exec_demo_1.c : Execute other process

22

The exec() system Call

2. exec_demo_2.c : Execute other process with
arguments

22

The exec() system Call

3. exec_demo_J3.c: Pass arguments around!

22

The exec() system Call

4. exec demo 4.c: Get wc of exec_demo 4.c

22

The exec() system Call

5. exec_demo_b.c: Get wc of any file

22

The exec() system Call

6. man wc to understand what we get

22

The exec() system Call

/. exec _demo 6.c: Local variables accessible in child!

22

