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What is a File?

Array of bytes. 

File system consists of many files.
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What is a File?

Array of bytes. 

Ranges of bytes can be read/written. 

File system consists of many files. 

Files need names so programs can 
choose the right one.
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File Names

Three types of names: 
 - inode 
 - path 
 - file descriptor
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• Each file has exactly one inode number.

 6



Inodes

• Each file has exactly one inode number.

 6



Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

 6



Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

 6



Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

• Different file system may use the same number, 
numbers may be recycled after deletes.

 6



Inodes

Each file has exactly one inode number. 

Inodes are unique (at a given time) within a FS. 

Different file system may use the same number, 
numbers may be recycled after deletes. 

Show inodes via stat.
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Inodes
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nipun@nipun-VirtualBox:~$ echo hello > abc.txt 
nipun@nipun-VirtualBox:~$ cat abc.txt 
hello 
nipun@nipun-VirtualBox:~$ stat abc.txt 
  File: abc.txt 
  Size: 6          Blocks: 8          IO Block: 4096   regular file 
Device: 801h/2049d Inode: 440161      Links: 1 
Access: (0644/-rw-r--r--)  Uid: ( 1000/   nipun)   Gid: ( 1000/   nipun) 
Access: 2018-11-14 14:15:28.122932148 +0530 
Modify: 2018-11-14 14:15:23.228486149 +0530 
Change: 2018-11-14 14:15:23.228486149 +0530 
 Birth: - 

Stat Unix utility

Command Line Demo 
Demo1.sh



What does “i” stand for?

“In truth, I don't know either. It was just a term that 
we started to use. ‘Index’ is my best guess, 
because of the slightly unusual file system 
structure that stored the access information of files 
as a flat array on the disk…” 

~ Dennis Ritchie
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File API (attempt 1)

read(int inode, void *buf, size_t nbyte) 

write(int inode, void *buf, size_t nbyte) 
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File API (attempt 1)

read(int inode, void *buf, size_t nbyte) 

write(int inode, void *buf, size_t nbyte) 
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Disadvantages? 
- names hard to remember 
- no way to change offset  



File API (attempt 1)

pread(int inode, void *buf, 
      off_t offset, size_t nbyte) 
pwrite(int inode, void *buf, 
       off_t offset size_t nbyte)
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File Names

Three types of names: 
 - inode 
 - path 
 - file descriptor
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Paths

String names are friendlier than number names. 
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Paths

String names are friendlier than number names. 

Store path-to-inode mappings in a predetermined 
“root” file (typically inode 2)
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Paths

String names are friendlier than number names. 

Store path-to-inode mappings in a predetermined 
“root” file (typically inode 2)
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Paths

String names are friendlier than number names. 

Store path-to-inode mappings in a predetermined 
“root” file (typically inode 2) 

Generalize!  Store path-to-inode mapping in many 
files.  Call these special files directories. 
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Paths

String names are friendlier than number names. 

Store path-to-inode mappings in a predetermined 
“root” file (typically inode 2) 

Generalize!  Store path-to-inode mapping in many 
files.  Call these special files directories. 
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Paths

String names are friendlier than number names. 

Store path-to-inode mappings in a predetermined 
“root” file (typically inode 2) 

Generalize!  Store path-to-inode mapping in many 
files.  Call these special files directories. 

Reads for getting final inode called “traversal”.
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Directory Calls

mkdir: create new directory 

readdir: read/parse directory entries 

Why no writedir?
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File API (attempt 2)

pread(char *path, void *buf, 
      off_t offset, size_t nbyte) 

pwrite(char *path, void *buf, 
       off_t offset size_t nbyte) 
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File API (attempt 2)

pread(char *path, void *buf, 
      off_t offset, size_t nbyte) 

pwrite(char *path, void *buf, 
       off_t offset size_t nbyte) 
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Disadvantages?



File API (attempt 2)

pread(char *path, void *buf, 
      off_t offset, size_t nbyte) 

pwrite(char *path, void *buf, 
       off_t offset size_t nbyte) 
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Disadvantages?  Expensive traversal!  Goal: traverse once.



File Names

Three types of names: 
 - inode 
 - path 
 - file descriptor
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File Descriptor (fd)
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File Descriptor (fd)
• Idea: do traversal once, and store inode in 

descriptor object.  Do reads/writes via 
descriptor.

 37



File Descriptor (fd)
• Idea: do traversal once, and store inode in 

descriptor object.  Do reads/writes via 
descriptor.

• Also remember offset.

 37



File Descriptor (fd)
• Idea: do traversal once, and store inode in 

descriptor object.  Do reads/writes via 
descriptor.

• Also remember offset.
• A file-descriptor table contains pointers to file 

descriptors.

 37



File Descriptor (fd)
• Idea: do traversal once, and store inode in 

descriptor object.  Do reads/writes via 
descriptor.

• Also remember offset.
• A file-descriptor table contains pointers to file 

descriptors.
• The integers you’re used to using for file I/O are 

indexes into this table.
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FD Table (xv6)
struct file { 
  ... 
  struct inode *ip; 
  uint off;                       //Offset}; 

// Per-process state                                                                                                                                  
struct proc { 
  ...                                                                                   
  struct file *ofile[N][NOFILE];  // Open files 
  ... 
}
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Code Snippet
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
int fd2 = open(“file.txt”); // returns 4 
int fd3 = dup(fd2);         // returns 5
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Code Snippet
int fd1 = open(“file.txt”); // returns 3 
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Code Snippet
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
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Code Snippet
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
int fd2 = open(“file.txt”); // returns 4 
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Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
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Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
lseek(fd1, 20, SEEK_SET); 
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Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3 
read(fd1, buf, 12); 
lseek(fd1, 20, SEEK_SET); 
lseek(fd1, 30, SEEK_CUR);
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File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode) 

read(int fd, void *buf, size_t nbyte) 

write(int fd, void *buf, size_t nbyte) 

close(int fd)
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File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode) 

read(int fd, void *buf, size_t nbyte) 

write(int fd, void *buf, size_t nbyte) 

close(int fd)
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advantages: 
 - string names 
 - traverse once 
 - different offsets



Strace on Common Operations
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prompt> strace cat foo    
… 
open(“foo”, O_RDONLY|O_LARGEFILE)  = 3   
read(3, “hello\n”, 4096)     = 6 
write(1, “hello\n”, 6)  = 6 // file descriptor 1: standard out 
hello 
read(3, “”, 4096)       = 0 // 0: no bytes left in the file 
close(3)   
… 
prompt> 

Demo2.sh



fsync
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fsync

• Write buffering improves performance (why?).
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fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are 

flushed?

• fsync(int fd) forces buffers to flush to disk, and 
(usually) tells the disk to flush it’s write cache too.

• This makes data durable.
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rename

rename(char *old, char *new): 
 - deletes an old link to a file 
 - creates a new link to a file 
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rename

rename(char *old, char *new): 
 - deletes an old link to a file 
 - creates a new link to a file 
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rename

rename(char *old, char *new): 
 - deletes an old link to a file 
 - creates a new link to a file 

What if we crash?
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rename

rename(char *old, char *new): 
 - deletes an old link to a file 
 - creates a new link to a file 

What if we crash? 
FS does extra work to guarantee atomicity.
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Atomic File Update

Say we want to update file.txt. 

1. write new data to new file.txt.tmp file 
2. fsync file.txt.tmp 
3. rename file.txt.tmp over file.txt, replacing it 

 57



Deleting Files

There is no system call for deleting files!
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Deleting Files

There is no system call for deleting files! 

Inode (and associated file) is garbage collected 
when there are no references (from paths or fds).
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Deleting Files

There is no system call for deleting files! 

Inode (and associated file) is garbage collected 
when there are no references (from paths or fds). 

Paths are deleted when: unlink() is called.

 60



Let’s Learn About Link Before Unlink 
Hard Link
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prompt> echo hello > file 
prompt> cat file 
hello 
prompt> ln file file2  // create a hard link, link file to file2 
prompt> cat file2 
hello 



Let’s Learn About Link Before Unlink 
Hard Link

link(old pathname, new one)
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prompt> echo hello > file 
prompt> cat file 
hello 
prompt> ln file file2  // create a hard link, link file to file2 
prompt> cat file2 
hello 



Let’s Learn About Link Before Unlink 
Hard Link

link(old pathname, new one)
• Link a new file name to an old one
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prompt> echo hello > file 
prompt> cat file 
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Let’s Learn About Link Before Unlink 
Hard Link

link(old pathname, new one)
• Link a new file name to an old one
• Create another way to refer to the same file
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prompt> echo hello > file 
prompt> cat file 
hello 
prompt> ln file file2  // create a hard link, link file to file2 
prompt> cat file2 
hello 



Let’s Learn About Link Before Unlink 
Hard Link

link(old pathname, new one)
• Link a new file name to an old one
• Create another way to refer to the same file
• The command-line link program : ln
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prompt> echo hello > file 
prompt> cat file 
hello 
prompt> ln file file2  // create a hard link, link file to file2 
prompt> cat file2 
hello 



Let’s Learn About Link Before Unlink 
Hard Link
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Let’s Learn About Link Before Unlink 
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prompt> echo hello > file 
prompt> cat file 
hello 
prompt> ln file file2  // create a hard link, link file to file2 
prompt> cat file2 
hello 
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Create another entry in the directory  
pointing to the same node


