
Operating Systems
Lecture 30: Filesystems

Nipun Batra
Nov 14, 2018

What is a File?

Array of bytes.

File system consists of many files.

 2

What is a File?

Array of bytes.

Ranges of bytes can be read/written.

File system consists of many files.

Files need names so programs can
choose the right one.

 3

File Names

Three types of names:
 - inode
 - path
 - file descriptor

 4

File Names

Three types of names:
 - inode
 - path
 - file descriptor

 5

Inodes

 6

Inodes

• Each file has exactly one inode number.

 6

Inodes

• Each file has exactly one inode number.

 6

Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

 6

Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

 6

Inodes

• Each file has exactly one inode number.

• Inodes are unique (at a given time) within a FS.

• Different file system may use the same number,
numbers may be recycled after deletes.

 6

Inodes

Each file has exactly one inode number.

Inodes are unique (at a given time) within a FS.

Different file system may use the same number,
numbers may be recycled after deletes.

Show inodes via stat.

 7

Inodes

 8

nipun@nipun-VirtualBox:~$ echo hello > abc.txt
nipun@nipun-VirtualBox:~$ cat abc.txt
hello
nipun@nipun-VirtualBox:~$ stat abc.txt
 File: abc.txt
 Size: 6 Blocks: 8 IO Block: 4096 regular file
Device: 801h/2049d Inode: 440161 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ nipun) Gid: (1000/ nipun)
Access: 2018-11-14 14:15:28.122932148 +0530
Modify: 2018-11-14 14:15:23.228486149 +0530
Change: 2018-11-14 14:15:23.228486149 +0530
 Birth: -

Stat Unix utility

Command Line Demo
Demo1.sh

What does “i” stand for?

“In truth, I don't know either. It was just a term that
we started to use. ‘Index’ is my best guess,
because of the slightly unusual file system
structure that stored the access information of files
as a flat array on the disk…”

~ Dennis Ritchie

 9

 10

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 file

 file

in
od

e
nu

m
be

r

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

 11

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

 12

Disadvantages?
- names hard to remember
- no way to change offset

File API (attempt 1)

pread(int inode, void *buf,
 off_t offset, size_t nbyte)
pwrite(int inode, void *buf,
 off_t offset size_t nbyte)

 13

File Names

Three types of names:
 - inode
 - path
 - file descriptor

 14

Paths

String names are friendlier than number names.

 15

Paths

String names are friendlier than number names.

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

 16

 17

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r
Paths

 18

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “readme.txt”: 3, “hello”: 0, …

Paths

 19

location
size=120

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “readme.txt”: 3, “hello”: 0, …

Paths

Paths

String names are friendlier than number names.

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

 20

Paths

String names are friendlier than number names.

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

 21

 22

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

Directories and Files

 23

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 0

Directories and Files

 24

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 1

Directories and Files

 25

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 2

Directories and Files

 26

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 3

Directories and Files

 27

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 4

Directories and Files

 28

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 5

Directories and Files

 29

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 6

Directories and Files

Paths

String names are friendlier than number names.

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

 30

Paths

String names are friendlier than number names.

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

Reads for getting final inode called “traversal”.

 31

Directory Calls

mkdir: create new directory

readdir: read/parse directory entries

Why no writedir?

 32

File API (attempt 2)

pread(char *path, void *buf,
 off_t offset, size_t nbyte)

pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

 33

File API (attempt 2)

pread(char *path, void *buf,
 off_t offset, size_t nbyte)

pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

 34

Disadvantages?

File API (attempt 2)

pread(char *path, void *buf,
 off_t offset, size_t nbyte)

pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

 35

Disadvantages? Expensive traversal! Goal: traverse once.

File Names

Three types of names:
 - inode
 - path
 - file descriptor

 36

File Descriptor (fd)

 37

File Descriptor (fd)
• Idea: do traversal once, and store inode in

descriptor object. Do reads/writes via
descriptor.

 37

File Descriptor (fd)
• Idea: do traversal once, and store inode in

descriptor object. Do reads/writes via
descriptor.

• Also remember offset.

 37

File Descriptor (fd)
• Idea: do traversal once, and store inode in

descriptor object. Do reads/writes via
descriptor.

• Also remember offset.
• A file-descriptor table contains pointers to file

descriptors.

 37

File Descriptor (fd)
• Idea: do traversal once, and store inode in

descriptor object. Do reads/writes via
descriptor.

• Also remember offset.
• A file-descriptor table contains pointers to file

descriptors.
• The integers you’re used to using for file I/O are

indexes into this table.

 37

FD Table (xv6)
struct file {
 ...
 struct inode *ip;
 uint off; //Offset};

// Per-process state
struct proc {
 ...
 struct file *ofile[N][NOFILE]; // Open files
 ...
}

 38

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

 39

Code Snippet
int fd1 = open(“file.txt”); // returns 3

 40

0
1
2
3
4
5

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

“file.txt” also points here

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);

 41

0
1
2
3
4
5

 offset = 12
 inode =

fds
fd table

 location = …
 size = …

inode

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4

 42

0
1
2
3
4
5

 offset = 12
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

Implicit seek

Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);

 43

0
1
2
3
4
5

 offset = 12
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
lseek(fd1, 20, SEEK_SET);

 44

0
1
2
3
4
5

 offset = 32
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

Explicit Seek (use LSEEK)
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
lseek(fd1, 20, SEEK_SET);
lseek(fd1, 30, SEEK_CUR);

 45

0
1
2
3
4
5

 offset = 50
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

 46

File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

 47

advantages:
 - string names
 - traverse once
 - different offsets

Strace on Common Operations

 48

prompt> strace cat foo
…
open(“foo”, O_RDONLY|O_LARGEFILE) = 3
read(3, “hello\n”, 4096) = 6
write(1, “hello\n”, 6) = 6 // file descriptor 1: standard out
hello
read(3, “”, 4096) = 0 // 0: no bytes left in the file
close(3)
…
prompt>

Demo2.sh

fsync

 49

fsync

• Write buffering improves performance (why?).

 49

fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are

flushed?

 49

fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are

flushed?

 49

fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are

flushed?

• fsync(int fd) forces buffers to flush to disk, and
(usually) tells the disk to flush it’s write cache too.

 49

fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are

flushed?

• fsync(int fd) forces buffers to flush to disk, and
(usually) tells the disk to flush it’s write cache too.

 49

fsync

• Write buffering improves performance (why?).
• But what if we crash before the buffers are

flushed?

• fsync(int fd) forces buffers to flush to disk, and
(usually) tells the disk to flush it’s write cache too.

• This makes data durable.

 49

rename

rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

 50

 51

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 “oldname”: 3, …

 52

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 …

 53

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 “newname”: 3

rename

rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

 54

rename

rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

What if we crash?

 55

rename

rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

What if we crash?
FS does extra work to guarantee atomicity.

 56

Atomic File Update

Say we want to update file.txt.

1. write new data to new file.txt.tmp file
2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it

 57

Deleting Files

There is no system call for deleting files!

 58

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).

 59

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).

Paths are deleted when: unlink() is called.

 60

Let’s Learn About Link Before Unlink
Hard Link

 61

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

Let’s Learn About Link Before Unlink
Hard Link

link(old pathname, new one)

 61

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

Let’s Learn About Link Before Unlink
Hard Link

link(old pathname, new one)
• Link a new file name to an old one

 61

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

Let’s Learn About Link Before Unlink
Hard Link

link(old pathname, new one)
• Link a new file name to an old one
• Create another way to refer to the same file

 61

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

Let’s Learn About Link Before Unlink
Hard Link

link(old pathname, new one)
• Link a new file name to an old one
• Create another way to refer to the same file
• The command-line link program : ln

 61

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

Let’s Learn About Link Before Unlink
Hard Link

 62

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

location
size=120

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “file”: 3, “file2”: 3, …

Let’s Learn About Link Before Unlink
Hard Link

 62

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2 // create a hard link, link file to file2
prompt> cat file2
hello

location
size=120

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “file”: 3, “file2”: 3, …

Create another entry in the directory
pointing to the same node

