Administrative

VM; Video of last lecture up on website

Shell Fun -I (Fork Bomb)

Shell Fun -II

Bq command

Operating Systems Lecture 5: CPU Scheduling Policies

Nipun Batra Aug 10, 2018

P1

Running

Next P = f(run time, metric, type of process, ...)

Set of P2 P3 processes P1 1. Time at which P is created

Set of P2 P3 processes P1 2. Length of job P

Set of P2 P3 processes P1 4. Is it only CPU? Or CPU & IO?

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion
- 4. All jobs use only the CPU
- 5. Run time of each job is known

Arrived at t1

Arrived at t1 Completed at t2

Turnaround time (P1) = t2-t1

A, B and C come at T= 0, 0 + Delta, 0 +2 Delta

A, B and C come at T=0, 0 + Delta, 0 + 2 Delta

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion
- 4. All jobs use only the CPU
- 5. Run time of each job is known

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion
- 4. All jobs use only the CPU
- 5. Run time of each job is known

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion
- 4. All jobs use only the CPU
- 5. Run time of each job is known

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion
- 4. All jobs use only the CPU
- 5. Run time of each job is known

0 10 20 30 40 50

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion (Pre-emptible)
- 4. All jobs use only the CPU
- 5. Run time of each job is known

Workload Assumptions

- 1. Each job runs for the same time
- 2. All jobs arrive at the same time
- 3. Once started, each job runs to completion (Pre-emptible)
- 4. All jobs use only the CPU
- 5. Run time of each job is known

0 10 20 30 40 50

Arrives at 0

- Arrives at 0
- Runs for first time at 0

- Arrives at 0
- Runs for first time at 0
- Response time = 0

- Arrives at 0
- Runs for first time at 10
- Response time = 10

Arrives at 0

- Arrives at 0
- Runs for first time at 20

- Arrives at 0
- Runs for first time at 20
- Response time = 20

Avg. Response Time =
$$(0+10+20)/3 \sim 10$$

Avg. Response Time =
$$(0+10+40)/3 \sim 17$$

Avg. Response Time =
$$(0+30+40)/3 \sim 23$$

None of the previous policies particularly good for response time

Round Robin

Response Time =
$$(10+20+0)/3=10$$

Turnaround Time = $(10+20+30)/3=20$

Response Time =
$$(0+5+10)/3=5$$

Turnaround Time = $(20+25+30)/3=25$

Round Robin

Response Time = (10+20+0)/3=10Turnaround Time = (10+20+30)/3=20

Time

Response Time = (0+5+10)/3=5Turnaround Time = (20+25+30)/3=25

Round Robin

Response Time = (10+20+0)/3=10

Turnaround Time = (10+20+30)/3=20

Time

Response Time = (0+5+10)/3=5Turnaround Time = (20+25+30)/3=25

Time