Operating Systenr
U Schedul,

| ecture 6; G

Nipun Batra
Aug 14, 2018

[ale

Policies

Workload Assumptions

1. BEachjobrunsforthesametime
2. AlHobs arrive gt the same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. All jobs use only the CPU

5. Run time of each job is known

Workload Assumptions

1. BEaehjobrunstorthe-sametime

2. AlHobs arrive gt the same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. Attobsuseonty-the-GPY

5. Run time of each job is known

Incorporating 10

. A A

0O 10 20 30 40 50 o0 70 80 90
Time

Incorporating 10

. A A

0O 10 20 30 40 50 o0 70 80 90
Time

CPU utilisation (%) = (30+40)*100%/90 ~77%

Incorporating 10

. A A

0 10 20 30 40 50 60 70 80 90
Time
CPU utilisation (%) = (30+40)*100%/90 ~77%
Avg. Response Time = (0+50)/2 =25

Incorporating 10

, A
Disk l

_

O 10 20 30 40 50 60 70 80 90

Time

CPU utilisation (%) = (30+40)*100%/90 ~77%

Avg. Response T

me = (0+50)/2 =25

Avg. Turnaround

ime = (50+90)/2 =70

Incorporating 10

. A A

0O 10 20 30 40 50 o0 70 80 90
Time

Incorporating 10

. A A

0O 10 20 30 40 50 o0 70 80 90
Time

CPU utilisation (%) = (30+40)*100%/70 =100%

Incorporating 10

. A A

0O 10 20 30 40 50 o0 70 80 90
Time

CPU utilisation (%) = (30+40)*100%/70 =100%
Avg. Response Time = (0+10)/2 =5

Incorporating 10

-~ [S

, A
Disk l

O 10 20 30 40 50 60 70 80 90

Time

CPU utilisation (%) = (30+40)*100%/70 =100%

Avg. Response T

me = (0+10)/2 =5

Avg. Turnaround

ime = (50+70)/2 =60

SPractice

. Compute the response time and turnaround time when running
three jobs of length 200 with the SJF and FIFO schedulers.

. Now do the same but with jobs of different Iengths: 100, 200, and
300.

. Now do the same, but also with the RR scheduler and a time-slice
of 1.

. For what types of workloads does SJF deliver the same turnaround
times as FIFO?

. For what types of workloads and quantum lengths does SJF deliver
the same response times as RR?

. What happens to response time with SJF as job lengths increase?
Can you use the simulator to demonstrate the trend?

. What happens to response time with RR as quantum lengths in-
crease? Can you write an equation that gives the worst-case re-
sponse time, given N jobs?

Workload Assumptions

1. BEaehjobrunstorthe-sametime

2. AlHobs arrive gt the same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. Attobsuseonty-the-GPY

5. Run time of each job is known

Workload Assumptions

1. BEachjob+rurstorthe-sametime

2. Allobsarrive atthe same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. Attobsuseonty-the-GPY

5. RuA-ttme-oteachjoptsKhowh

Multi-level Feedback Queue

Fernando José "Corby" Corbato

Multi-level Feedback Queue (MLFQ)

1. Optimize Turnaround time - run shorter jobs first
1. But we don't know “length” of a job
2. Optimize Response time
1. Round-robin optimises response time, but poor at

turnaround time

ML

- Rules

[High Priority] Q8 —> @ —>
Q7

Q6
Q5
as—(¢)
Q3
Q2

[Low Priority] Q1 —»@

ML

- Rules

[High Priority]

[Low Priority]

Q8 -
Q7
Q6
Q5
Q4 -
Q3
Q2
Q1

ML

Distinct queues

-Q:

of different

priority

=ules

[High Priority]

[Low Priority]

Q8 -
Q7
Q6
Q5
Q4 -
Q3
Q2

Q1 :

ML

Distinct queues

-Q:

of different

priority

=ules

[High Priority]

[Low Priority]

Q8 -
Q7
Q6
Q5
Q4 -
Q3
Q2

Q1 :

ML

Distinct queues

-Q:

of different

priority

=ules

[High Priority]

[Low Priority]

Q8 -
Q7
Q6
Q5
Q4 -
Q3
Q2
Q1

Priority of A > Priority of C
-> A will run before C

ML

Distinct queues

-Q:

of different

priority

=ules

[High Priority]

[Low Priority]

Q8 -
Q7
Q6
Q5
Q4 -
Q3
Q2
Q1

Priority of A > Priority of C
-> A will run before C

MLFQ: Rules

Dist?nct queues Priority of A = Priority
et | wianproriy) 08 (A) 1= (B)| s e

Q7

Q6

Q5 Priority of A > Priority of C

-> A will run before C

a4 ()

Q3

Q2

[Low Priority] Q1 +— @

MLFQ: Rules

Rule #2

Distinct queues Priority of A = Priority
of different : - . | of B -> They are run in
priority [High Priority] - Q8 @ — G round robin fashion

Q7

Q6

Rule #1
Q5 Priority of A > Priority of C
-> A will run before C

o1 [4(©

Q3

Q2

[Low Priority] Q1 —>@

MLFQ Priority Intuition

cpu

Disk A

B is CPU-intensive ->
CPU . . .
Lower Its priority over time

Disk

A IS Interactive ->
Keep it high priority
A

10

ML

-Q Attempt #1

A (200s)

11

ML

-Q Attempt #1

A (200s)

1. 3 queues
2. Time-quantum = 10s

11

ML

-Q Attempt #1

1. 3 queues
2. Time-quantum = 10s

11

ML

-Q Attempt #1

11

ML

-Q Attempt #1

Q2

Q1

QO

0 50 100 150 200

11

ML

-Q Attempt #1

New job is placed Q2
>

at highest priority

level

Q1

QO

0 50 100 150 200

11

MLFQ Attempt #7

New job is placed Q2

Since A uses the time-slice
without giving control,

at highest priority > / demoted to lower queue

level

Q1

QO

100 150 200

11

ML

-Q Attempt #1

Since A uses the time-slice

New job is placed Q2 without giving control,
>

at highest priority

level

L — demoted to lower queue

Since A uses the time-slice
Q1 without giving control,

/ demoted to lower queue

QO

0 50 100 150 200

11

MLFQ Attempt #7

New job is placed
at highest priority
level

Q2

Q1

QO

Since A uses the time-slice
without giving control,

L — demoted to lower queue

Since A uses the time-slice
without giving control,

/ demoted to lower queue

50 100 150 200

Rule 4a

11

MLFQ Attempt #7

Rule 3 Since A uses the time-slice
New job is placed Q2 without giving control,
at highest priority > demoted to lower queue
level / ______________________ Rule 44
Since A uses the time-slice
Q1 without giving control,

/ demoted to lower queue

QO

0 50 100 150 200

11

MLFQ Attempt #7

Q2
Q1
QO

12

MLFQ Attempt #7

Q2

Q1
QO

12

MLFQ Attempt #7

Since A uses the time-slice
without giving control,

Q2 demoted to lowered queue
/
Q1

QO

12

MLFQ Attempt #7

Since A uses the time-slice
without giving control,

Q2 / demoted to lowered queue
Q1 CPU

QO

12

MLFQ Attempt #7

Since A uses the time-slice
without giving control,

Q2 / demoted to lowered queue
Process gives up CPU
Q1 H/ before time-slice, remains in same priority

QO

12

MLFQ Attempt #7

Since A uses the time-slice
without giving control,

Q2 / demoted to lowered queue
Process gives up CPU Rule 4b
Q1 H/ before time-slice, remains in same priority

QO

12

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

ML

-Q Attempt #1 (MLFQ approximates SJF)

0 50 100 150 200

13

MLFQ Attempt #1 (MLFQ approximates SJF)

 Assume |ob Is short and give highest priority
* |f its short, completes soon, else, demoted

0 50 100 150 200

13

MLFQ Attempt #1 : 1O + CPU intensive

|O heavy jobs, relinquish control soon, remain at same priority

0 50 100 150 200

14

ML

-Q Attempt #1: Shortcomings

15

MLFQ Attempt #1: Shortcomings

1. Starvation : Too many |/O jobs will eat up the CPU;
no execution for CPU intensive ones

15

MLFQ Attempt #1: Shortcomings

2. Scheduler gaming :

15

MLFQ Attempt #1: Shortcomings

1. Time slice = x

15

MLFQ Attempt #1: Shortcomings

2. Run CPU for 0.99*x

15

MLFQ Attempt #1: Shortcomings

3. Request |/O

15

MLFQ Attempt #1: Shortcomings

4. Remain in same priority

15

MLFQ Attempt #1: Shortcomings

5. Goto 2

15

MLFQ Attempt #1: Shortcomings

3. Behaviour change: CPU intensive went to lowest
oriority, but has loads of I/O after say y time units

15

MLFQ Attempt 2.

“riorty

SO0St

16

MLFQ Attempt 2: Priority Boost

150 200

ML

-Q Attempt 2

“riorty

SO0St

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

150

200

ML

-Q Attempt 2

 No process starvation

“riorty

SO0St

150

200

ML

-Q Attempt 2

“riorty

e Behaviour change handled

SO0St

150

200

MLFQ Attempt 2: Priority Boost

How to choose S7

* Very high S -> Starvation

* Very low S -> Response time (in particular of
interactive jobs) will get worse

MLFQ Attempt #1: Shortcomings

1. Starvation—Teo-many-HO-jobs-witkcatup-the-CRY,
.y onfor OPLLintens:
2. Scheduler gaming :

1. Time slice = x
2. Run CPU for 0.99*x

3. Request |/O
4. Remain in same priority
5. Goto 2
3. Behaviourchanage: CPU intensive went to lowes
SHorbv—but-hastoads-otHO-altersa Mo e

MLFQ: Attempt 3: Better Accounting

Rule 4a Demote process it it uses up its quota
Rule 4b Process gives up CPU

before time-slice, remains in same priority

19

MLFQ: Attempt 3: Better Accounting

Rule 4a Demote process it it uses up its quota
Rule 4b Process gives up CPU

before time-slice, remains in same priority

Replace with

MLFQ: Attempt 3: Better Accounting

Rule 4a Demote process it it uses up its quota
Rule 4b Process gives up CPU

before time-slice, remains in same priority

Replace with

Rule 4 Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the

CPU), its priority is reduced (i.e., it moves down one

queue).

19

ML

-Q: Attempt 3:

With Rule 4a and 4b

Setter Accounting

"

0 50 100 150 200 250 300

MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b With new Rule 4

. e

100 150 200 250 300 100 150 200 250 300

summary

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
o Rule 2: If Priority(A) = Priority(B), A & B run in RR.
 Rule 3: When a job enters the system, it is placed at the

nighest priority (the topmost queue).
* Rule 4: Once a job uses up its time allotment at a given

evel (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

21

Practice Session

OPTIONS jobs 3

OPTIONS queues 3

OPTIONS quantum length for queue 2 is 10
OPTIONS quantum length for queue 1 is 10
OPTIONS quantum length for queue 0 is 10
OPTIONS boost 0

OPTIONS ioTime 5

OPTIONS stayAfterIO False

OPTIONS iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every 1oFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Jab | 3siE:
Job 0: startTime O - runTime 19 - ioFreq
Job 1: startTime @ - runTime 24 - ioFreq
Job 2: startTime O - runTime 22 - ioFreq

Practice Session

./mlfq.py -s 5 -Q 2,10,15 -n 3 -3 3 -M @ -m 30 —c

jobs 3

queues 3

quantum length for queue
quantum length for queue
quantum length for queue
boost @

ioTime 5

stayAfterIO False

iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every ioFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Job List:
Jobi 0t startRime O = RURTINe 19 =] gEEeq
Job 1: startTime @ - runTime 24 - ioFreq
Job 2: startTime @ - runiime 22 - 10Freq

