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Workload Assumptions

1. BEachjobrunsforthesametime
2. AlHobs arrive gt the same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. All jobs use only the CPU

5. Run time of each job is known
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SPractice

. Compute the response time and turnaround time when running
three jobs of length 200 with the SJF and FIFO schedulers.

. Now do the same but with jobs of different Iengths: 100, 200, and
300.

. Now do the same, but also with the RR scheduler and a time-slice
of 1.

. For what types of workloads does SJF deliver the same turnaround
times as FIFO?

. For what types of workloads and quantum lengths does SJF deliver
the same response times as RR?

. What happens to response time with SJF as job lengths increase?
Can you use the simulator to demonstrate the trend?

. What happens to response time with RR as quantum lengths in-
crease? Can you write an equation that gives the worst-case re-
sponse time, given N jobs?
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Workload Assumptions

1. BEachjob+rurstorthe-sametime

2. Allobsarrive atthe same time-

3. Onrecestartedeachiobrunsto-completion (Pre-emptible)
4. Attobsuseonty-the-GPY

5. RuA-ttme-oteachjoptsKhowh




Multi-level Feedback Queue

Fernando José "Corby" Corbato



Multi-level Feedback Queue (MLFQ)

1. Optimize Turnaround time - run shorter jobs first
1. But we don't know “length” of a job
2. Optimize Response time
1. Round-robin optimises response time, but poor at

turnaround time
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MLFQ: Rules
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MLFQ: Rules

Rule #2

Distinct queues Priority of A = Priority
of different : - . | of B -> They are run in
priority [High Priority] - Q8 @ — G round robin fashion

Q7

Q6

Rule #1
Q5 Priority of A > Priority of C
-> A will run before C

o1 [4(©

Q3

Q2

[Low Priority] Q1 —>@




MLFQ Priority Intuition

cpu

Disk A

B is CPU-intensive ->
CPU . . .
Lower Its priority over time

Disk

A IS Interactive ->
Keep it high priority
A
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MLFQ Attempt #7

New job is placed
at highest priority
level

Q2

Q1

QO

Since A uses the time-slice
without giving control,

L — demoted to lower queue

Since A uses the time-slice
without giving control,

/ demoted to lower queue

50 100 150 200

Rule 4a
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MLFQ Attempt #7

Rule 3 Since A uses the time-slice
New job is placed Q2 without giving control,
at highest priority > demoted to lower queue
level / ______________________ Rule 44
Since A uses the time-slice
Q1 without giving control,

/ demoted to lower queue

QO
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MLFQ Attempt #7

Since A uses the time-slice
without giving control,

Q2 / demoted to lowered queue
Process gives up CPU Rule 4b
Q1 H/ before time-slice, remains in same priority

QO
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MLFQ Attempt #1 (MLFQ approximates SJF)

 Assume |ob Is short and give highest priority
* |f its short, completes soon, else, demoted

0 50 100 150 200
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MLFQ Attempt #1 : 1O + CPU intensive

|O heavy jobs, relinquish control soon, remain at same priority

0 50 100 150 200
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MLFQ Attempt #1: Shortcomings

1. Starvation : Too many |/O jobs will eat up the CPU;
no execution for CPU intensive ones
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4. Remain in same priority
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MLFQ Attempt #1: Shortcomings

5. Goto 2
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MLFQ Attempt #1: Shortcomings

3. Behaviour change: CPU intensive went to lowest
oriority, but has loads of I/O after say y time units
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MLFQ Attempt 2.

“riorty

SO0St
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MLFQ Attempt 2: Priority Boost
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-Q Attempt 2

“riorty

SO0St

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.
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ML

-Q Attempt 2

“riorty

e Behaviour change handled

SO0St

150

200



MLFQ Attempt 2: Priority Boost

How to choose S7

* Very high S -> Starvation

* Very low S -> Response time (in particular of
interactive jobs) will get worse



MLFQ Attempt #1: Shortcomings

1. Starvation—Teo-many-HO-jobs-witkcatup-the-CRY,
.y onfor OPLLintens:
2. Scheduler gaming :

1. Time slice = x
2. Run CPU for 0.99*x

3. Request |/O
4. Remain in same priority
5. Goto 2
3. Behaviourchanage: CPU intensive went to lowes
SHorbv—but-hastoads-otHO-altersa Mo e



MLFQ: Attempt 3: Better Accounting

Rule 4a Demote process it it uses up its quota
Rule 4b Process gives up CPU

before time-slice, remains in same priority
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MLFQ: Attempt 3: Better Accounting

Rule 4a Demote process it it uses up its quota
Rule 4b Process gives up CPU

before time-slice, remains in same priority

Replace with

Rule 4 Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the

CPU), its priority is reduced (i.e., it moves down one

queue).
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-Q: Attempt 3:

With Rule 4a and 4b

Setter Accounting
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MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b With new Rule 4

. e

100 150 200 250 300 100 150 200 250 300




summary

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
o Rule 2: If Priority(A) = Priority(B), A & B run in RR.
 Rule 3: When a job enters the system, it is placed at the

nighest priority (the topmost queue).
* Rule 4: Once a job uses up its time allotment at a given

evel (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.
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Practice Session

OPTIONS jobs 3

OPTIONS queues 3

OPTIONS quantum length for queue 2 is 10
OPTIONS quantum length for queue 1 is 10
OPTIONS quantum length for queue 0 is 10
OPTIONS boost 0

OPTIONS ioTime 5

OPTIONS stayAfterIO False

OPTIONS iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every 1oFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Jab | 3siE:
Job 0: startTime O - runTime 19 - ioFreq
Job 1: startTime @ - runTime 24 - ioFreq
Job 2: startTime O - runTime 22 - ioFreq




Practice Session

./mlfq.py -s 5 -Q 2,10,15 -n 3 -3 3 -M @ -m 30 —c

jobs 3

queues 3

quantum length for queue
quantum length for queue
quantum length for queue
boost @

ioTime 5

stayAfterIO False

iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every ioFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Job List:
Jobi 0t startRime O = RURTINe 19 = ] gEEeq
Job 1: startTime @ - runTime 24 - ioFreq
Job 2: startTime @ - runiime 22 - 10Freq




