
Operating Systems
Lecture 6: CPU Scheduling Policies
Nipun Batra
Aug 14, 2018

Workload Assumptions

 2

1. Each job runs for the same time
2. All jobs arrive at the same time

3. Once started, each job runs to completion (Pre-emptible)

4. All jobs use only the CPU

5. Run time of each job is known

Workload Assumptions

 2

1. Each job runs for the same time
2. All jobs arrive at the same time

3. Once started, each job runs to completion (Pre-emptible)

4. All jobs use only the CPU

5. Run time of each job is known

Incorporating IO

 3

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk
80

A

90

Incorporating IO

 3

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/90 ~77%

80

A

90

Incorporating IO

 3

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/90 ~77%
Avg. Response Time = (0+50)/2 =25

80

A

90

Incorporating IO

 3

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/90 ~77%
Avg. Response Time = (0+50)/2 =25
Avg. Turnaround Time = (50+90)/2 =70

80

A

90

Incorporating IO

 4

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk
80

A

90

B B

Incorporating IO

 4

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/70 =100%

80

A

90

B B

Incorporating IO

 4

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/70 =100%
Avg. Response Time = (0+10)/2 =5

80

A

90

B B

Incorporating IO

 4

A B

0 10 20 30
Time
40 50 60 70

A

A

A

CPU

Disk

CPU utilisation (%) = (30+40)*100%/70 =100%
Avg. Response Time = (0+10)/2 =5
Avg. Turnaround Time = (50+70)/2 =60

80

A

90

B B

Practice

 5

Workload Assumptions

 6

1. Each job runs for the same time
2. All jobs arrive at the same time

3. Once started, each job runs to completion (Pre-emptible)

4. All jobs use only the CPU

5. Run time of each job is known

Workload Assumptions

 6

1. Each job runs for the same time
2. All jobs arrive at the same time

3. Once started, each job runs to completion (Pre-emptible)

4. All jobs use only the CPU

5. Run time of each job is known

Multi-level Feedback Queue

 7

Fernando José "Corby" Corbató

Multi-level Feedback Queue (MLFQ)

 8

1. Optimize Turnaround time - run shorter jobs first
1. But we don’t know “length” of a job

2. Optimize Response time
1. Round-robin optimises response time, but poor at

turnaround time

MLFQ: Rules

 9

MLFQ: Rules

 9

MLFQ: Rules

 9

Distinct queues
of different
priority

MLFQ: Rules

 9

Distinct queues
of different
priority

MLFQ: Rules

 9

Distinct queues
of different
priority

Priority of A > Priority of C
-> A will run before C

MLFQ: Rules

 9

Distinct queues
of different
priority

Priority of A > Priority of C
-> A will run before C

MLFQ: Rules

 9

Distinct queues
of different
priority

Priority of A > Priority of C
-> A will run before C

Priority of A = Priority
of B -> They are run in
round robin fashion

MLFQ: Rules

 9

Distinct queues
of different
priority

Priority of A > Priority of C
-> A will run before C

Priority of A = Priority
of B -> They are run in
round robin fashion

Rule #1

Rule #2

MLFQ Priority Intuition

 10

A

A

A

A

ACPU

Disk

A is interactive ->
Keep it high priority

BCPU

Disk

B is CPU-intensive ->
Lower its priority over time

MLFQ Attempt #1

 11

A (200s)

MLFQ Attempt #1

 11

A (200s)
1. 3 queues
2. Time-quantum = 10s

MLFQ Attempt #1

 11

1. 3 queues
2. Time-quantum = 10s

MLFQ Attempt #1

 11

MLFQ Attempt #1

 11

MLFQ Attempt #1

 11

New job is placed
at highest priority
level

MLFQ Attempt #1

 11

New job is placed
at highest priority
level

Since A uses the time-slice
 without giving control,
 demoted to lower queue

MLFQ Attempt #1

 11

New job is placed
at highest priority
level

Since A uses the time-slice
 without giving control,
 demoted to lower queue

Since A uses the time-slice
 without giving control,
 demoted to lower queue

MLFQ Attempt #1

 11

New job is placed
at highest priority
level

Since A uses the time-slice
 without giving control,
 demoted to lower queue

Since A uses the time-slice
 without giving control,
 demoted to lower queue

Rule 4a

MLFQ Attempt #1

 11

New job is placed
at highest priority
level

Since A uses the time-slice
 without giving control,
 demoted to lower queue

Since A uses the time-slice
 without giving control,
 demoted to lower queue

Rule 3

Rule 4a

MLFQ Attempt #1

 12

CPU

Disk

CPU

Q2

Q1

Q0

MLFQ Attempt #1

 12

CPU

Disk

CPU

CPUQ2

Q1

Q0

MLFQ Attempt #1

 12

CPU

Since A uses the time-slice
 without giving control,
 demoted to lowered queue

Disk

CPU

CPUQ2

Q1

Q0

MLFQ Attempt #1

 12

CPU

Since A uses the time-slice
 without giving control,
 demoted to lowered queue

Disk

CPU

CPU

CPU

Q2

Q1

Q0

MLFQ Attempt #1

 12

CPU

Since A uses the time-slice
 without giving control,
 demoted to lowered queue
Process gives up CPU
before time-slice, remains in same priority

Disk

CPU

CPU

CPU

Q2

Q1

Q0

MLFQ Attempt #1

 12

CPU

Since A uses the time-slice
 without giving control,
 demoted to lowered queue
Process gives up CPU
before time-slice, remains in same priority

Rule 4b

Disk

CPU

CPU

CPU

Q2

Q1

Q0

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

MLFQ Attempt #1 (MLFQ approximates SJF)

 13

• Assume job is short and give highest priority
• If its short, completes soon, else, demoted

MLFQ Attempt #1 : IO + CPU intensive

 14

IO heavy jobs, relinquish control soon, remain at same priority

MLFQ Attempt #1: Shortcomings

 15

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O
4. Remain in same priority

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O
4. Remain in same priority
5. Goto 2

MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O
4. Remain in same priority
5. Goto 2

3. Behaviour change: CPU intensive went to lowest
priority, but has loads of I/O after say y time units

MLFQ Attempt 2: Priority Boost

 16

MLFQ Attempt 2: Priority Boost

 16

MLFQ Attempt 2: Priority Boost

 16

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

MLFQ Attempt 2: Priority Boost

 16

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.
• No process starvation

MLFQ Attempt 2: Priority Boost

 16

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.
• No process starvation
• Behaviour change handled

MLFQ Attempt 2: Priority Boost

 17

How to choose S?
• Very high S -> Starvation
• Very low S -> Response time (in particular of

interactive jobs) will get worse

MLFQ Attempt #1: Shortcomings

 18

1. Starvation : Too many I/O jobs will eat up the CPU;
no execution for CPU intensive ones

2. Scheduler gaming :
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O
4. Remain in same priority
5. Goto 2

3. Behaviour change: CPU intensive went to lowest
priority, but has loads of I/O after say y time units

MLFQ: Attempt 3: Better Accounting

 19

Rule 4a Demote process if it uses up its quota
Rule 4b Process gives up CPU
before time-slice, remains in same priority

MLFQ: Attempt 3: Better Accounting

 19

Rule 4a Demote process if it uses up its quota
Rule 4b Process gives up CPU
before time-slice, remains in same priority

Replace with

MLFQ: Attempt 3: Better Accounting

 19

Rule 4a Demote process if it uses up its quota
Rule 4b Process gives up CPU
before time-slice, remains in same priority

Rule 4 Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

Replace with

 20

MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b

 20

MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b With new Rule 4

Summary

 21

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: When a job enters the system, it is placed at the

highest priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

Practice Session

 22

./mlfq.py -s 5 -Q 10,10,10 -n 3 -j 3 -M 0 -m 30

Practice Session

 23

./mlfq.py -s 5 -Q 2,10,15 -n 3 -j 3 -M 0 -m 30 -c

