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Fernando José "Corby" Corbató 



Multi-level Feedback Queue (MLFQ)

 8

1. Optimize Turnaround time - run shorter jobs first  
1. But we don’t know “length” of a job 

2. Optimize Response time 
1. Round-robin optimises response time, but poor at 

turnaround time
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Distinct queues  
of different  
priority

Priority of A > Priority of C 
-> A will run before C

Priority of A = Priority 
of B -> They are run in 
round robin fashion

Rule #1

Rule #2
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New job is placed  
at highest priority  
level

Since A uses the time-slice 
 without giving control, 
 demoted to lower queue

Since A uses the time-slice 
 without giving control, 
 demoted to lower queue

Rule 3

Rule 4a
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• Assume job is short and give highest priority  
• If its short, completes soon, else, demoted



MLFQ Attempt #1 : IO + CPU intensive
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IO heavy jobs, relinquish control soon, remain at same priority



MLFQ Attempt #1: Shortcomings

 15



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x
2. Run CPU for 0.99*x



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O 



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O 
4. Remain in same priority



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x
2. Run CPU for 0.99*x
3. Request I/O 
4. Remain in same priority
5. Goto 2



MLFQ Attempt #1: Shortcomings

 15

1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones

2. Scheduler gaming : 
1. Time slice = x
2. Run CPU for 0.99*x
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3. Behaviour change: CPU intensive went to lowest 
priority, but has loads of I/O after say y time units
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Rule 5: After some time period S, move all the jobs in the system 
to the topmost queue.
• No process starvation
• Behaviour change handled
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How to choose S? 
• Very high S -> Starvation 
• Very low S -> Response time (in particular of 

interactive jobs) will get worse
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1. Starvation : Too many I/O jobs will eat up the CPU; 
no execution for CPU intensive ones 

2. Scheduler gaming :  
1. Time slice = x 
2. Run CPU for 0.99*x 
3. Request I/O  
4. Remain in same priority 
5. Goto 2 

3. Behaviour change: CPU intensive went to lowest 
priority, but has loads of I/O after say y time units
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Rule 4a Demote process if it uses up its quota 
Rule 4b Process gives up CPU  
before time-slice, remains in same priority

Rule 4 Once a job uses up its time allotment at a given 
level (regardless of how many times it has given up the 
CPU), its priority is reduced (i.e., it moves down one 
queue).

Replace with
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MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b
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MLFQ: Attempt 3: Better Accounting

With Rule 4a and 4b With new Rule 4
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• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).  
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.  
• Rule 3: When a job enters the system, it is placed at the 

highest priority (the topmost queue).  
• Rule 4: Once a job uses up its time allotment at a given 

level (regardless of how many times it has given up the 
CPU), its priority is reduced (i.e., it moves down one 
queue).  

• Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.
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./mlfq.py -s 5 -Q 10,10,10 -n 3 -j 3 -M 0 -m 30
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./mlfq.py -s 5 -Q 2,10,15 -n 3 -j 3 -M 0 -m 30 -c


