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1. Homework due tomorrow noon -  form automatically 
closes 

2. Quiz (worth 10%) on Tuesday. Syllabus - from start till 
MLFQ (including MLFQ) 

3. Process API (Chapter 5) - lab questions: 
1. Do on own? 
2. Have a lab on weekend? 

4. Linux extra lab
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• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).  
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.  
• Rule 3: When a job enters the system, it is placed at the 

highest priority (the topmost queue).  
• Rule 4: Once a job uses up its time allotment at a given 

level (regardless of how many times it has given up the 
CPU), its priority is reduced (i.e., it moves down one 
queue).  

• Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.



Practice Session
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./mlfq.py -s 5 -Q 2,10,15 -n 3 -j 3 -M 0 -m 30 -c
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./mlfq.py --jlist 0,40,0:20,20,0 -Q 5,10,10 -c
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./mlfq.py --jlist 0,40,0:10,20,0:20,30,0 -Q 5,10,10 -c -B 50
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./mlfq.py -c

Practice Session
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Practice Session



More Topics
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Will cover after remaining topics are finished: 
1. Lottery scheduling 
2. Multi-CPU scheduling (needs concurrency 

background) 
3. Inter-process communication (IPC)
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Running
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CPU Virtualisation Revisited



Core Challenges in CPU Virtualisation 
Mechanisms
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1. Performance - Minimise OS overhead 
2. Control - OS should maintain control 

1. Imagine OS schedules a process with infinite loop 
2. We saw priority reduces over time in MLFQ
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1. Create entry for process
2. Allocate memory for 

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory
2. Remove process from 

process list
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1. How would OS stop the current process and run 
another

2. How does OS ensure that the program doesn’t make 
illegal access (issuing I/O)
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Restricted Operations
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1. How would OS stop the current process and run 
another 

2. How does OS ensure that the program doesn’t make 
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

• Goal: A process must be able to perform I/O and 
some other restricted operations, but without 
giving the process complete control over the 
system.
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Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode - 

can not issue IO
2. If tries to issue IO or 

restricted operation, 
exception raised

Code can issue IO. 
Mode that OS runs in.

Syscall 
(Trap  

Instruction)



Pop Quiz
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Interrupt v/s Polling?


