
Operating Systems
Lecture 7: MLFQ + Limited Direct
Execution

Nipun Batra
Aug 16, 2018

Administrative

 3

1. Homework due tomorrow noon - form automatically
closes

2. Quiz (worth 10%) on Tuesday. Syllabus - from start till
MLFQ (including MLFQ)

3. Process API (Chapter 5) - lab questions:
1. Do on own?
2. Have a lab on weekend?

4. Linux extra lab

MLFQ - Revision

 4

MLFQ - Revision

 4

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: When a job enters the system, it is placed at the

highest priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

Practice Session

 5

./mlfq.py -s 5 -Q 2,10,15 -n 3 -j 3 -M 0 -m 30 -c

Practice Session

 6

./mlfq.py --jlist 0,40,0:20,20,0 -Q 5,10,10 -c

Practice Session

 7

./mlfq.py --jlist 0,40,0:10,20,0:20,30,0 -Q 5,10,10 -c -B 50

 8

./mlfq.py -c

Practice Session

 9

Practice Session

More Topics

 10

Will cover after remaining topics are finished:
1. Lottery scheduling
2. Multi-CPU scheduling (needs concurrency

background)
3. Inter-process communication (IPC)

 11

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

Which program
to run

How to run

CPU Virtualisation Revisited

Core Challenges in CPU Virtualisation
Mechanisms

 12

1. Performance - Minimise OS overhead
2. Control - OS should maintain control

1. Imagine OS schedules a process with infinite loop
2. We saw priority reduces over time in MLFQ

Direct Execution

 13

OS Program

Direct Execution

 13

1. Create entry for process

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory

Direct Execution

 13

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory
2. Remove process from

process list

Direct Execution Challenges

 14

Direct Execution Challenges

 14

1. How would OS stop the current process and run
another

Direct Execution Challenges

 14

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

• Goal: A process must be able to perform I/O and
some other restricted operations, but without
giving the process complete control over the
system.

 16

Restricted Operations

Modes

Kernel Mode User Mode

 16

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO

 16

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

 16

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

 16

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

Syscall
(Trap

Instruction)

Pop Quiz

 17

Interrupt v/s Polling?

