
Operating Systems
Lecture 8: Limited Direct Execution +
Memory Virtualisation

Nipun Batra
Aug 17, 2018

Administrative

 2

1. Homework due in 3 hours noon
2. Quiz (worth 10%) on Tuesday. Syllabus - from start till

MLFQ (including MLFQ)
3. Lab on weekend?

VM crashes (fork bomb)

 3

PsUtil demo

 4

Direct Execution

 5

OS Program

Direct Execution

 5

1. Create entry for process

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory

Direct Execution

 5

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory
2. Remove process from

process list

Direct Execution Challenges

 6

Direct Execution Challenges

 6

1. How would OS stop the current process and run
another

Direct Execution Challenges

 6

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 7

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

• Goal: A process must be able to perform I/O and
some other restricted operations, but without
giving the process complete control over the
system.

 8

Restricted Operations

Modes

Kernel Mode User Mode

 8

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO

 8

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

 8

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

 8

Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

Syscall
(Trap

Instruction)

 9

Traps v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

 10

Traps v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

 11

Traps v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

 12

Traps v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Old PC
Arguments

Function call

 13

Traps v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Old PC
Arguments

Function call

 14

Traps (System) v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open()
main() Code

Stack

MemoryCPU

PC

SP

System call

User Mode

Kernel Mode

 15

Traps (System) v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open()
main() Code

Stack

MemoryCPU

PC

SP

System call

User Mode

Kernel Mode

 16

Traps (System) v/s Function Calls

f(x)
…
…

Int f(x) {
…
}

main()
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open()
main() Code

Stack

MemoryCPU*

PC

System call

User Mode

Kernel Mode

Kernel
StackSP Old PC

Arguments
Trap

Handler

 17

 18

 19

Switching Between Processes

 20

Switching Between Processes

 20

• Is the OS running on CPU when program is running?

Switching Between Processes

 20

• Is the OS running on CPU when program is running?

Switching Between Processes

 20

• Is the OS running on CPU when program is running?

• NO!

Switching Between Processes

 20

• Is the OS running on CPU when program is running?

• NO!

Switching Between Processes

 20

• Is the OS running on CPU when program is running?

• NO!

• How does OS get back in control?

Switching Between Processes -
Cooperative

 21

Switching Between Processes -
Cooperative

 21

• OS trusts processes

Switching Between Processes -
Cooperative

 21

• OS trusts processes

Switching Between Processes -
Cooperative

 21

• OS trusts processes

• Long running processes periodically give up CPU

Switching Between Processes -
Cooperative

 21

• OS trusts processes

• Long running processes periodically give up CPU
• Via system call

Switching Between Processes -
Cooperative

 21

• OS trusts processes

• Long running processes periodically give up CPU
• Via system call

• But what if we don’t need a system call?

Switching Between Processes -
Cooperative

 21

• OS trusts processes

• Long running processes periodically give up CPU
• Via system call

• But what if we don’t need a system call?
• Explicit system calls!

Switching Between Processes -
Cooperative

 21

• OS trusts processes

• Long running processes periodically give up CPU
• Via system call

• But what if we don’t need a system call?
• Explicit system calls!

Switching Between Processes -
Non-Cooperative

 22

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds
• What to execute when interrupt occurs?

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds
• What to execute when interrupt occurs?

• OS sets up interrupt service routine

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds
• What to execute when interrupt occurs?

• OS sets up interrupt service routine
• OS starts timer at the boot time

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds
• What to execute when interrupt occurs?

• OS sets up interrupt service routine
• OS starts timer at the boot time

Switching Between Processes -
Non-Cooperative

 22

• Process refuses to make system calls?
• What if there is a bug?

• Restart!
• Timer interrupt

• Don’t need cooperative approach
• Raise every x milliseconds
• What to execute when interrupt occurs?

• OS sets up interrupt service routine
• OS starts timer at the boot time

 23

 24

 25

Simultaneous Interrupts?

 26

Simultaneous Interrupts?

 26

• What happens if two interrupts (say timer and syscall)
occur together?

Simultaneous Interrupts?

 26

• What happens if two interrupts (say timer and syscall)
occur together?

• Hard to handle!

Simultaneous Interrupts?

 26

• What happens if two interrupts (say timer and syscall)
occur together?

• Hard to handle!
• Simple way of handling : Disable interrupts while

handling interrupts

Simultaneous Interrupts?

 26

• What happens if two interrupts (say timer and syscall)
occur together?

• Hard to handle!
• Simple way of handling : Disable interrupts while

handling interrupts
• How long to disable? -> Lost interrupts?

Simultaneous Interrupts?

 26

• What happens if two interrupts (say timer and syscall)
occur together?

• Hard to handle!
• Simple way of handling : Disable interrupts while

handling interrupts
• How long to disable? -> Lost interrupts?

• More on it when we study concurrency!

Memory Virtualisation

 27

Early days
Single program

Memory Virtualisation

 28

Early days
Multiprogamming

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory
• Load another process?

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory
• Load another process?

• Write to disk, read other program from disk

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory
• Load another process?

• Write to disk, read other program from disk
• Slow?

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory
• Load another process?

• Write to disk, read other program from disk
• Slow?

• HDD v/s RAM

Memory Virtualisation

 28

Early days
Multiprogamming

• Single program takes total memory
• Load another process?

• Write to disk, read other program from disk
• Slow?

• HDD v/s RAM
• SSD v/s RAM

Shared Memory

 29

Shared Memory

 29

Risk

Shared Memory

 29

Risk
• Programs accessing

others’ memory

Address Space

 30

Virtual
Address

Grow in opposite
 directions

Goals of OS for Memory Virtualisation

 31

1. Transparency
1. Virtual memory is invisible to user program
2. Program thinks it has own private large memory

2. Efficiency
1. Not taking very long
2. Not taking too much space

3. Protection/Isolation
1. Protect processes from each other

