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1. Homework due in 3 hours noon 
2. Quiz (worth 10%) on Tuesday. Syllabus - from start till 

MLFQ (including MLFQ) 
3. Lab on weekend?
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1. Create entry for process
2. Allocate memory for 

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory
2. Remove process from 

process list
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1. How would OS stop the current process and run 
another 

2. How does OS ensure that the program doesn’t make 
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

• Goal: A process must be able to perform I/O and 
some other restricted operations, but without 
giving the process complete control over the 
system.
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Restricted Operations

Modes

Kernel Mode User Mode
1. Restricted mode - 

can not issue IO
2. If tries to issue IO or 

restricted operation, 
exception raised

Code can issue IO. 
Mode that OS runs in.

Syscall 
(Trap  

Instruction)
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Traps v/s Function Calls

f(x) 
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Int f(x) { 
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main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call



 10

Traps v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call



 11

Traps v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call



 12

Traps v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Old PC 
Arguments

Function call



 13

Traps v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Old PC 
Arguments

Function call



 14

Traps (System) v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open() 
main() Code

Stack

MemoryCPU

PC

SP

System call

User Mode

Kernel Mode



 15

Traps (System) v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open() 
main() Code

Stack

MemoryCPU

PC

SP

System call

User Mode

Kernel Mode



 16

Traps (System) v/s Function Calls

f(x) 
… 
… 

Int f(x) { 
… 
} 

main() 
…

Code

Stack

MemoryCPU

PC

SP

Function call

Open() 
main() Code

Stack

MemoryCPU*

PC

System call

User Mode

Kernel Mode

Kernel 
StackSP Old PC 

Arguments
Trap  

Handler
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• Is the OS running on CPU when program is running?

• NO!

• How does OS get back in control?
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• What happens if two interrupts (say timer and syscall) 
occur together?

• Hard to handle!
• Simple way of handling : Disable interrupts while 

handling interrupts
• How long to disable? -> Lost interrupts?

• More on it when we study concurrency!
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Early days 
Multiprogamming

• Single program takes total memory
• Load another process?

• Write to disk, read other program from disk
• Slow?

• HDD v/s RAM
• SSD v/s RAM
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Risk 
• Programs accessing 

others’ memory



Address Space
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Virtual  
Address

Grow in opposite 
 directions
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1. Transparency 
1. Virtual memory is invisible to user program 
2. Program thinks it has own private large memory 

2. Efficiency 
1. Not taking very long 
2. Not taking too much space 

3. Protection/Isolation 
1. Protect processes from each other


