Operating Systems

_ecture 3: Limi
Viemory Virtua

Nipun Batra
Aug 17, 2018

ted Direct
isation

—Xecution +

Administrative

1. Homework due in 3 hours noon
2. Quiz (worth 10%) on Tuesday. Syllabus - from start till
MLFQ (including MLFQ)

3. Lab on weekend?

VM crashes (fork bomb)

PsUth demo

Direct =xecution
OS Program

Direct Execution
OS Program

1. Create entry for process

Direct Execution
OS Program

2. Allocate memory for
ProCess

Direct Execution
OS Program

3. Load program into memory

Direct =xecution
OS Program

4. Set up stack

Direct Execution
OS Program

5. Execute call main()

Direct Execution
OS Program

5. Execute call main()

1. Run main()

Direct Execution
OS Program

5. Execute call main()

2. Execute return from main

Direct Execution
OS Program

5. Execute call main()

2. Execute return from main

1. Free memory

Direct

—Xecution

0S

5. Execute call main()

2. Remove process from
process list

Program

2. Execute return from main

Direct

—xecution Challenges

Direct Execution Challenges

1. How would OS stop the current process and run
another

Direct Execution Challenges

2. How does OS ensure that the program doesn’t make
llegal access (issuing 1/O)

Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
llegal access (issuing 1/O)

Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

* Do we stop accessing I/O and network?

Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

Restricted Operations

1. How would OS stop the current process and run
another
2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

* (Goal: A process must be able to perform |/O and
some other restricted operations, but without
giving the process complete control over the
system.

Restricted Operations

Modes

Kernel Mode User Mode

Restricted Operations

Modes

Kernel Mode User Mode

1. Restricted mode -
can not issue |0

Restricted Operations

Modes

Kernel Mode User Mode

2. If tries to issue 10 or
restricted operation,
exception raised

Restricted Operations

Modes

Kernel Mode User Mode

Code can issue 10.
Mode that OS runs in.

2. If tries to issue 10 or
restricted operation,
exception raised

Restricted Operations

Modes

Syscall
(Trap

Kernel Mode .—_Instruction)

Code can issue 10.
Mode that OS runs in.

User Mode

2.

I tries to issue |O or
restricted operation,
exception raised

Traps v/s Function Calls

CPU Memory

PC 1 main()
f(X)

Code

Int 1(x) {
:

Stack

Traps v/s Function Calls

CPU Memory

main()
PC T f(X)

Code

Int 1(x) {
:

Stack

Traps v/s Function Calls

CPU Memory

main()
f(x)

Code

PC——! Intf(x) |

Stack

Traps v/s Function Calls

CPU Memory

main()
f(x)

Code

PC——! Intf(x) |

}
Old PC
Arguments | Stack

SP——

Traps v/s Function Calls
CPU Memory
main()
f(x)
N Code
Int f(x) {
PC——|)
Old PC Stack
tac
Sp X Arguments

13

Traps (System) v/s

Function call

CPU

PG

Memory

main()
f(x)

Int 1(x) {
:

SP

Code

Stack

—unction Calls

System call

CPU Memory

PC [main()
Open()

SP——

Kernel Mode

Code

14

Traps (System) v/s Function Calls

CPU Memory CPU Memory
main() main() | Code
f(x) PC——| Open()
PC > Coc
ode
= |
Int f(x) | Stack
i
o
Stack

15

Traps (System) v/s Function Calls

CPU Memory CPU* Memory
main() main() | Code
f(x) Open()
PC >
N Code
Int f(x) | Stack
)
SP] SP > Old PC Kernel
Stack Arguments | Stack
pc— Irap

Handler

16

OS @ boot Hardware
(kernel mode)

initialize trap table
remember address of...
syscall handler

OS @ boot
(kernel mode)

Hardware

initialize trap table

OS @ run
(kernel mode)

remember address of...
syscall handler

Hardware

Program
(user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC

return-from-trap

restore regs from kernel stack
move to user mode
jump to main

A

Load program into memgry
Setup user stack with argv
Fill kernel stack with reg/PC

return-from-trap

Handle trap
Do work of syscall
return-from-trap

Free memory of process
Remove from process list

restore regs from kernel stack
move to user mode
jump to main

save regs to kernel stack
move to kernel mode
jump to trap handler

restore regs from kernel stack
move to user mode
jump to PC after trap

Run main()

Call system call
trap into OS

return from main
trap (via exit ())

19

Switching

Setween

PrOCESSEeS

20

Switching Between Processes

* |sthe OS running on CPU when program is running”

20

Switching

Setween

PrOCESSEeS

20

Switching

* NO!

Setween

PrOCESSEeS

20

Switching

Setween

PrOCESSEeS

20

Switching Between Processes

* How does OS get back in control?

20

Switching Between
Cooperative

PrOCESSES -

21

Switching Between
Cooperative

* OS trusts processes

PrOCESSES -

21

Switching Between
Cooperative

PrOCESSES -

21

Switching Between Processes -
Cooperative

* [L.ong running processes periodically give up CPU

21

Switching Between
Cooperative

* Via system call

PrOCESSES -

21

Switching Between Processes -
Cooperative

* But what it we don't need a system call?

21

Switching Between Processes -
Cooperative

* Explicit system calls!

21

Switching Between
Cooperative

PrOCESSES -

21

Switching Between
Non-Cooperative

PrOCESSES -

22

Switching Between Processes -
Non-Cooperative

* Process refuses to make system calls?

22

Switching Between Processes -
Non-Cooperative

 What if there is a bug?

22

Switching Between
Non-Cooperative

e Restart!

PrOCESSES -

22

Switching Between
Non-Cooperative

* [imer interrupt

PrOCESSES -

22

Switching Between Processes -
Non-Cooperative

* Don't need cooperative approach

22

Switching Between Processes -
Non-Cooperative

* Raise every x milliseconds

22

Switching Between Processes -
Non-Cooperative

* What to execute when interrupt occurs?

22

Switching Between Processes -
Non-Cooperative

* OS sets up interrupt service routine

22

Switching Between Processes -
Non-Cooperative

e (OS starts timer at the boot time

22

Switching Between
Non-Cooperative

PrOCESSES -

22

Switching Between
Non-Cooperative

PrOCESSES -

22

OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...

syscall handler
timer handler

start timer
interrupt CPU in X ms

23

OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms
OS @ run Hardware Program
(kernel mode) (user mode)
Process A

Handle the trap

Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

24

OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms
OS @ run Hardware Program
(kernel mode) (user mode)
Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC
Process B

25

Simultaneous Interrupts”?

20

Simultaneous Interrupts”?

 What happens if two interrupts (say timer and syscall)
occur together?

20

Simultaneous Interrupts”?

e Hard to handle!

20

Simultaneous Interrupts”?

 Simple way of handling : Disable interrupts while
handling interrupts

20

Simultaneous Interrupts”?

 How long to disable”? -> Lost interrupts?

20

Simultaneous Interrupts”?

 More on it when we study concurrency!

20

NViemory Virtualisation

Early days
Single program

OKB

64KB

Mmax

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

27

NViemory Virtualisation

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

Early days
Multiprogamming

28

NViemory Virtualisation

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

* Single program takes total memory

Early days
Multiprogamming

28

NViemory Virtualisation

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

e |Load another process?

Early days
Multiprogamming

28

NViemory Virtualisation

OKB Early dayS
R Multiprogamming

64KB

Current Program
(code, data, etc.)

max

o Write to disk, read other program from disk

NViemory Virtualisation

e Slow?

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

Early days
Multiprogamming

28

NViemory Virtualisation

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

 HDD v/s RAM

Early days
Multiprogamming

28

NViemory Virtualisation

OKB

64KB

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

o SSD v/s RAM

Early days
Multiprogamming

28

Shared Memory

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

29

Shared Memory

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

Risk

29

Shared Memory

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

* Programs accessing
others’ memory

29

Address Space

Virtual
Address

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

the code segment:
where instructions live

the heap segment:
contains malloc’d data
dynamic data structures

(it grows downward)

Grow in opposite

(free)

Stack

> directions

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

30

Goals of OS for Memory Virtualisation

1. Transparency

1. Virtual memory is invisible to user program

2. Program thinks it has own private large memory
2. Efficiency

1. Not taking very long

2. Not taking too much space
3. Protection/Isolation

1. Protect processes from each other

31

