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1. Next Wednesday answer sheets in lab session 
2. Projects - list would be available on Monday 

1. Project 5 -> 8% (3% reduced from homework) 
2. More details on Tuesday…
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Time multiplexing : Share resource by dividing over time

1. CPU scheduling on single core
2. Think more?!
3. Class room scheduling - single class runs in at any 

given point of time
4. TDMA??
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Space multiplexing : Share resource by dividing into 
smaller pieces

1. CPU scheduling on multiple cores?
2. Cake sharing
3. Think more?
4. Memory management
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Early days 
Single program
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Risk 
• Programs accessing 

others’ memory

MS Word
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What if process 
says it wants full 
memory?

Internal
Fragmentation
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Can Python run 
now? 

Total memory - 
Memory req for 
Illustrator > = 
Memory req for 
Python

External 
Fragmentation
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Can Python run 
now? 

Total memory - 
Memory req for 
Illustrator > = 
Memory req for 
Python

External 
Fragmentation



Goals of OS for Memory Virtualisation/
Management
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1. Transparency 
1. Physical memory is invisible to user program 
2. Program thinks it has own private large 

(contiguous + plentiful) memory 
2. Efficiency 

1. Not taking very long 
2. Not taking too much space 

3. Protection/Isolation 
1. Protect processes from each other



Memory Interface
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1. Load (address) 
2. Store (address, value)
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1. Abstraction : Break the connection between physical 
memory and an address

2. Data accessed using memory interface is virtual 
address
1. Physical address points to memory
2. Virtual address points to something acting like 

memory



Address Space

 18

Virtual  
Address

Grow in opposite 
 directions
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What if they meet? 

Self-study : what is 
stack overflow? 
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def fib(n): 
    if n==1 or n==0: 
        return 1 
    else: 
        return n*fib(n-1)



Exec Revisited
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fork_same_address.c
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Execute

Load
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Fetch 
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Execute 
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Execute 

Store
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 29

Do all process start and end  
from 0 KB and 16 KB?
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CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What if you want to translate same 
virtual address again?

Cache!!



General Address Translation
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CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What do you do with cache if there 
is a context switch?


