
Operating Systems
Lecture 9: Limited Direct Execution +
Memory Virtualisation

Nipun Batra
Aug 23, 2018

Administrative

 2

1. Next Wednesday answer sheets in lab session
2. Projects - list would be available on Monday

1. Project 5 -> 8% (3% reduced from homework)
2. More details on Tuesday…

Space v/s Time Multiplexing

 3

Time multiplexing : Share resource by dividing over time

Space v/s Time Multiplexing

 3

Time multiplexing : Share resource by dividing over time

1. CPU scheduling on single core

Space v/s Time Multiplexing

 3

Time multiplexing : Share resource by dividing over time

1. CPU scheduling on single core
2. Think more?!

Space v/s Time Multiplexing

 3

Time multiplexing : Share resource by dividing over time

1. CPU scheduling on single core
2. Think more?!
3. Class room scheduling - single class runs in at any

given point of time

Space v/s Time Multiplexing

 3

Time multiplexing : Share resource by dividing over time

1. CPU scheduling on single core
2. Think more?!
3. Class room scheduling - single class runs in at any

given point of time
4. TDMA??

Space v/s Time Multiplexing

 4

Space multiplexing : Share resource by dividing into
smaller pieces

Space v/s Time Multiplexing

 4

Space multiplexing : Share resource by dividing into
smaller pieces

1. CPU scheduling on multiple cores?

Space v/s Time Multiplexing

 4

Space multiplexing : Share resource by dividing into
smaller pieces

1. CPU scheduling on multiple cores?
2. Cake sharing

Space v/s Time Multiplexing

 4

Space multiplexing : Share resource by dividing into
smaller pieces

1. CPU scheduling on multiple cores?
2. Cake sharing
3. Think more?

Space v/s Time Multiplexing

 4

Space multiplexing : Share resource by dividing into
smaller pieces

1. CPU scheduling on multiple cores?
2. Cake sharing
3. Think more?
4. Memory management

Memory Virtualisation

 5

Early days
Single program

Shared Memory

 6

Shared Memory

 6

MS Word

Shared Memory

 6

Risk

MS Word

Shared Memory

 6

Risk
• Programs accessing

others’ memory

MS Word

Direct Physical Memory Multiplexing

 7

Direct Physical Memory Multiplexing

 7

Direct Physical Memory Multiplexing

 7

Direct Physical Memory Multiplexing

 7

Direct Physical Memory Multiplexing

 7

Limited to
physical memory
on the system

Direct Physical Memory Multiplexing

 8

Direct Physical Memory Multiplexing

 8

Direct Physical Memory Multiplexing

 8

Direct Physical Memory Multiplexing

 8

Direct Physical Memory Multiplexing

 8

Limited to
physical memory
on the system

Direct Physical Memory Multiplexing

 9

Direct Physical Memory Multiplexing

 9

What if process
says it wants full
memory?

Direct Physical Memory Multiplexing

 10

Direct Physical Memory Multiplexing

 10

What if process
says it wants full
memory?

Direct Physical Memory Multiplexing

 10

What if process
says it wants full
memory?

Internal
Fragmentation

Direct Physical Memory Multiplexing

 11

Direct Physical Memory Multiplexing

 11

Direct Physical Memory Multiplexing

 11

Can Python run
now?

Total memory -
Memory req for
Illustrator > =
Memory req for
Python

Direct Physical Memory Multiplexing

 11

Can Python run
now?

Total memory -
Memory req for
Illustrator > =
Memory req for
Python

External
Fragmentation

Defragmentation Memories …

 12

Direct Physical Memory Multiplexing

 13

Defragmentation

Direct Physical Memory Multiplexing

 13

Defragmentation

Direct Physical Memory Multiplexing

 13

Defragmentation

Direct Physical Memory Multiplexing

 14

Direct Physical Memory Multiplexing

 14

Direct Physical Memory Multiplexing

 14

Can Python run
now?

Total memory -
Memory req for
Illustrator > =
Memory req for
Python

Direct Physical Memory Multiplexing

 14

Can Python run
now?

Total memory -
Memory req for
Illustrator > =
Memory req for
Python

External
Fragmentation

Goals of OS for Memory Virtualisation/
Management

 15

1. Transparency
1. Physical memory is invisible to user program
2. Program thinks it has own private large

(contiguous + plentiful) memory
2. Efficiency

1. Not taking very long
2. Not taking too much space

3. Protection/Isolation
1. Protect processes from each other

Memory Interface

 16

1. Load (address)
2. Store (address, value)

Physical v/s Virtual Memory

 17

Physical v/s Virtual Memory

 17

1. Abstraction : Break the connection between physical
memory and an address

Physical v/s Virtual Memory

 17

1. Abstraction : Break the connection between physical
memory and an address

2. Data accessed using memory interface is virtual
address

Physical v/s Virtual Memory

 17

1. Abstraction : Break the connection between physical
memory and an address

2. Data accessed using memory interface is virtual
address
1. Physical address points to memory

Physical v/s Virtual Memory

 17

1. Abstraction : Break the connection between physical
memory and an address

2. Data accessed using memory interface is virtual
address
1. Physical address points to memory
2. Virtual address points to something acting like

memory

Address Space

 18

Virtual
Address

Grow in opposite
 directions

Stack Overflow?!

 19

What if they meet?

Self-study : what is
stack overflow?

Stack Overflow?!

 20

def fib(n):
 if n==1 or n==0:
 return 1
 else:
 return n*fib(n-1)

Exec Revisited

 21

fork_same_address.c

Example

 22

Example

 22

Compiler

Example

 22

Compiler

Example

 22

Compiler

Example

 22

Example

 22

Example

 22

Example

 22

Example

 23

Example

 24

Fetch

Example

 24

Fetch

Example

 24

Fetch

Example

 25

Execute

Example

 25

Execute

Example

 25

Execute

Load

Example

 26

Fetch
& Execute

Example

 26

Fetch
& Execute

Example

 27

Fetch

Example

 28

Execute

Example

 28

Execute

Example

 28

Execute

Store

Pop Quiz

 29

Do all process start and end
from 0 KB and 16 KB?

Relocation

 30

Relocation

 31

Relocation

 31

General Address Translation

 32

CPU MMU Physical Memory

Kernel

General Address Translation

 33

CPU MMU Physical Memory

Kernel

General Address Translation

 33

CPU MMU Physical Memory

Kernel

Virtual Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address Physical Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What if you want to translate same
virtual address again?

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What if you want to translate same
virtual address again?

General Address Translation

 33

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What if you want to translate same
virtual address again?

Cache!!

General Address Translation

 34

CPU

0x10102030

MMU Physical Memory

Kernel

Virtual Address
0x10102030

Physical Address

What do you do with cache if there
is a context switch?

