
Operating Systems
Lecture 2: The Process

Nipun Batra

Concurrency

 2

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

1. Load Counter into register

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

1. Load Counter into register
2. Update Counter

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

1. Load Counter into register
2. Update Counter
3. Store Counter

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

1. Load Counter into register
2. Update Counter
3. Store Counter

4. Non-atomic update!

Concurrency

 2

1. We discussed previously how OS juggles between
multiple processes

2. Run python thread.py #loops
1. Different answers?
2. Counter UNEQUAL TO N * # Loops. Why?
3. Update operation:

1. Load Counter into register
2. Update Counter
3. Store Counter

4. Non-atomic update!

Persistence

 3

Persistence

 3

1. RAM is volatile —> need persistent storage

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD
3. OS has a component called filesystem:

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD
3. OS has a component called filesystem:

1. Storing and reading files

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD
3. OS has a component called filesystem:

1. Storing and reading files
2. Maintains data structure for file access

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD
3. OS has a component called filesystem:

1. Storing and reading files
2. Maintains data structure for file access

Persistence

 3

1. RAM is volatile —> need persistent storage
2. Earlier HDD and now mostly SSD
3. OS has a component called filesystem:

1. Storing and reading files
2. Maintains data structure for file access

Design Goals

 4

Design Goals

 4

1. High performance -> Minimize OS overheads

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

3. Reliability

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

3. Reliability
1. Imagine sitting in a flight and the OS crashing!

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

3. Reliability
1. Imagine sitting in a flight and the OS crashing!
2. Or, dispensing cash in an ATM and the OS

crashing!

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

3. Reliability
1. Imagine sitting in a flight and the OS crashing!
2. Or, dispensing cash in an ATM and the OS

crashing!
3. Or, the MRI scan machine OS reboots on its own!

Design Goals

 4

1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another
and the OS -> Isolation

3. Reliability
1. Imagine sitting in a flight and the OS crashing!
2. Or, dispensing cash in an ATM and the OS

crashing!
3. Or, the MRI scan machine OS reboots on its own!

4. Energy efficiency (esp. for mobile systems!)

Process

 5

• Process = Running program
• Review example from previous lecture

• Output of top
• Activity monitor

Memory in C

 6

– static: global variable storage, permanent for the entire run
of the program.
– stack: local variable storage (automatic, continuous
memory).
– heap: dynamic storage (large pool of memory, not
allocated in contiguous order).

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-
stack-the-heap-and-static/

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/
https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/

Memory in C

 7

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/

Memory in C

 7

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/

Process Execution

 8

Disk

Process Execution

 8

Disk

Program
(hello.c)

Process Execution

 8

Disk

Program
(hello.c)

Compile

Process Execution

 8

Disk

Program
(hello.c)

Executable
(hello.out)

Compile

Process Execution

 9

Disk
Executable
(hello.out)

Process Execution

 10

Disk
Executable
(hello.out)

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Address
Space

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute
4. Update PC

Process Execution

 10

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute
4. Update PC

CPU Virtualisation

 11

CPU Virtualisation

 11

• Goal: Provide an illusion of many CPUs

CPU Virtualisation

 11

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

CPU Virtualisation

 11

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

CPU Virtualisation

 11

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

51%

7%

19%

23%
P1
P2
P3
Unused

CPU Virtualisation

 11

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

51%

7%

19%

23%
P1
P2
P3
Unused

Space sharing for
memory

CPU Virtualisation II

 12

P1

Running

CPU Virtualisation II

 13

P1

P2 P3 P1

Running

Want to run

CPU Virtualisation II

 14

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

CPU Virtualisation II

 14

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

Next P = f(run time,
metric, type of process, …)

CPU Virtualisation II

 15

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

CPU Virtualisation II

 16

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

CPU Virtualisation II

 17

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

Which program
to run

How to run

Process API

 18

Process API

 18

• Create process:

Process API

 18

• Create process:
• Double click

Process API

 18

• Create process:
• Double click
• Run on command line

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:
• Suspend

Process API

 18

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:
• Suspend

Process States

 19

Running

Blocked

Ready
Scheduled

Descheduled

I/O initiate I/O done

Process States

 20

P0

P1

Time
10 2 3 4 5 6 7

Running
Ready
Blocked

Process States

 21

P0

P1

Time
10 2 3 4 5 6 7

Running
Ready

8

Blocked

