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1. High performance -> Minimize OS overheads
1. Extra memory
2. Extra CPU
3. Extra disk

2. Protecting applications from one harming another 
and the OS -> Isolation

3. Reliability 
1. Imagine sitting in a flight and the OS crashing!
2. Or, dispensing cash in an ATM and the OS 

crashing!
3. Or, the MRI scan machine OS reboots on its own!

4. Energy efficiency (esp. for mobile systems!)
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• Process = Running program 
• Review example from previous lecture 

• Output of top 
• Activity monitor
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– static: global variable storage, permanent for the entire run 
of the program. 
– stack: local variable storage (automatic, continuous 
memory). 
– heap: dynamic storage (large pool of memory, not 
allocated in contiguous order).

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-
stack-the-heap-and-static/
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• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

51%

7%

19%

23%
P1
P2
P3
Unused

Space sharing for 
memory
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P1

P2 P3 P1

Running

Want to run

OS  
Scheduler

P2

Should 
run

Low level  
mechanisms 

(Context  
switch)

Which program 
to run

How to run
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Running

Blocked

Ready
Scheduled

Descheduled

I/O initiate I/O done
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