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• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1
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• Create process:
• Double click 
• Run on command line 

• Destroy processes: 
• Task manager 
• Command line 

• Wait:
• Don’t run process till other process completes 

• Status: 
• How long run, what state it is in 
• Does top, ps give us this info? 

• Misc.: 
• Suspend 
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• Create process:
• fork() 
• exec() 

• Wait:
• wait() 
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2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent 

process?
4. See the above in Activity Monitor
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6. fork_demo_4.c: Use fork() to create child process
7. fork_demo_5.c: Add sleep to above and find these 

processes on Activity Monitor
8. Show the same using ps command 

1. (ps -p 42693 -o pid,ppid)
9. Fun: Keep finding parent process
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Run fork_demo_4 again. Different order? 
> man 2 fork 
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> man 2 fork 

Wait? Why does man fork not work?
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1. wait_demo_1.c :wait for child to exit
2. But wait, which wait to use?
3. Run wait_demo_2.c
4. Run wait_demo_3.c and find out NULL/0,’\0’
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1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with 

arguments
3. exec_demo_3.c: Pass arguments around!
4. exec_demo_4.c: Get wc of exec_demo_4.c
5. exec_demo_5.c: Get wc of any file
6. man wc to understand what we get
7. exec_demo_6.c: Local variables accessible in child!


