
Operating Systems
Lecture 3: The Process API
Nipun Batra
Aug 9, 2019

Memory in C

 2

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/

Memory in C

 2

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/

Process Execution

 3

Disk

Process Execution

 3

Disk

Program
(hello.c)

Process Execution

 3

Disk

Program
(hello.c)

Compile

Process Execution

 3

Disk

Program
(hello.c)

Executable
(hello.out)

Compile

Process Execution

 4

Disk
Executable
(hello.out)

Process Execution

 5

Disk
Executable
(hello.out)

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Address
Space

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute
4. Update PC

Process Execution

 5

Disk
Executable
(hello.out)

Memory

Load from
disk to memory

Code
Static
data
Heap
Stack

CPU

Program
Counter

1. Fetch
2. Decode
3. Execute
4. Update PC

CPU Virtualisation

 6

CPU Virtualisation

 6

• Goal: Provide an illusion of many CPUs

CPU Virtualisation

 6

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

CPU Virtualisation

 6

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

CPU Virtualisation

 6

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

51%

7%

19%

23%
P1
P2
P3
Unused

CPU Virtualisation

 6

• Goal: Provide an illusion of many CPUs
• How: Time sharing between processes

P1 P2 P3 P1

51%

7%

19%

23%
P1
P2
P3
Unused

Space sharing for
memory

CPU Virtualisation II

 7

P1

Running

CPU Virtualisation II

 8

P1

P2 P3 P1

Running

Want to run

CPU Virtualisation II

 9

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

CPU Virtualisation II

 9

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

Next P = f(run time,
metric, type of process, …)

CPU Virtualisation II

 10

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

CPU Virtualisation II

 11

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

CPU Virtualisation II

 12

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

Which program
to run

How to run

Process API

 13

Process API

 13

• Create process:

Process API

 13

• Create process:
• Double click

Process API

 13

• Create process:
• Double click
• Run on command line

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:
• Suspend

Process API

 13

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:
• Suspend

Process States

 14

Running

Blocked

Ready
Scheduled

Descheduled

I/O initiate I/O done

Process States

 15

P0

P1

Time
10 2 3 4 5 6 7

Running
Ready
Blocked

Process States

 16

P0

P1

Time
10 2 3 4 5 6 7

Running
Ready

8

Blocked

Process API

 17

• Create process:
• Double click
• Run on command line

• Destroy processes:
• Task manager
• Command line

• Wait:
• Don’t run process till other process completes

• Status:
• How long run, what state it is in
• Does top, ps give us this info?

• Misc.:
• Suspend

Process API

 18

• Create process:
• fork()
• exec()

• Wait:
• wait()

The fork() System Call

 19

> man fork

fork() demo

 20

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor
6. fork_demo_4.c: Use fork() to create child process

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor
6. fork_demo_4.c: Use fork() to create child process
7. fork_demo_5.c: Add sleep to above and find these

processes on Activity Monitor

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor
6. fork_demo_4.c: Use fork() to create child process
7. fork_demo_5.c: Add sleep to above and find these

processes on Activity Monitor
8. Show the same using ps command

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor
6. fork_demo_4.c: Use fork() to create child process
7. fork_demo_5.c: Add sleep to above and find these

processes on Activity Monitor
8. Show the same using ps command

1. (ps -p 42693 -o pid,ppid)

fork() demo

 20

1. fork_demo_1.c : Get the PID of current process
2. fork_demo_2.c : Get the PID of parent process
3. Use ps (man ps to find more) to find what’s the parent

process?
4. See the above in Activity Monitor
5. fork_demo_3.c: Add sleep to view more details in

Activity Monitor
6. fork_demo_4.c: Use fork() to create child process
7. fork_demo_5.c: Add sleep to above and find these

processes on Activity Monitor
8. Show the same using ps command

1. (ps -p 42693 -o pid,ppid)
9. Fun: Keep finding parent process

The fork() System Call

 21

Parent
….
….

main(){
fork()
….
….}

The fork() System Call

 21

Parent
….
….

main(){
fork()
….
….}

Address
Space of
Parent

Code
Static
data
Heap
Stack

The fork() System Call

 22

Parent
….
….

main(){
fork()
….
….}

Address
Space of
Parent

Code
Static
data
Heap
Stack

The fork() System Call

 23

Parent
….
….

main(){
fork()

….
….}

Address
Space of
Parent

Code

Static data

Heap

Stack

The fork() System Call

 24

Parent
….
….

main(){
fork()

….
….}

Address
Space of

Parent

Code
Static
data
Heap
Stack

Child
….
….

main(){
fork()

….
….}

Address
Space of

Child

Code
Static
data
Heap
Stack

The fork() System Call

 25

Parent
….
….

main(){
fork()
….
….}

Address
Space of

Parent

Code
Static
data
Heap
Stack

Child
….
….

main(){
fork()
….
….}

Address
Space of

Child

Code
Static
data
Heap
Stack

fork() Code Usage in Linux repo

 26

The wait() System Call

 27

Run fork_demo_4 again. Different order?
> man 2 fork

The wait() System Call

 28

> man 2 fork

Wait? Why does man fork not work?

The wait() System Call

 29

The wait() System Call

 29

1. wait_demo_1.c :wait for child to exit

The wait() System Call

 29

1. wait_demo_1.c :wait for child to exit
2. But wait, which wait to use?

The wait() System Call

 30

The wait() System Call

 30

1. wait_demo_1.c :wait for child to exit

The wait() System Call

 30

1. wait_demo_1.c :wait for child to exit
2. But wait, which wait to use?

The wait() System Call

 30

1. wait_demo_1.c :wait for child to exit
2. But wait, which wait to use?
3. Run wait_demo_2.c

The wait() System Call

 30

1. wait_demo_1.c :wait for child to exit
2. But wait, which wait to use?
3. Run wait_demo_2.c
4. Run wait_demo_3.c and find out NULL/0,’\0’

The exec() System Call

 31

> man 3 exec

The exec() System Call

 32

The exec() System Call

 32

1. exec_demo_1.c : Execute other process

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments
3. exec_demo_3.c: Pass arguments around!

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments
3. exec_demo_3.c: Pass arguments around!
4. exec_demo_4.c: Get wc of exec_demo_4.c

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments
3. exec_demo_3.c: Pass arguments around!
4. exec_demo_4.c: Get wc of exec_demo_4.c
5. exec_demo_5.c: Get wc of any file

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments
3. exec_demo_3.c: Pass arguments around!
4. exec_demo_4.c: Get wc of exec_demo_4.c
5. exec_demo_5.c: Get wc of any file
6. man wc to understand what we get

The exec() System Call

 32

1. exec_demo_1.c : Execute other process
2. exec_demo_2.c : Execute other process with

arguments
3. exec_demo_3.c: Pass arguments around!
4. exec_demo_4.c: Get wc of exec_demo_4.c
5. exec_demo_5.c: Get wc of any file
6. man wc to understand what we get
7. exec_demo_6.c: Local variables accessible in child!

