Operating Systems CPU Scheduling Policies

Nipun Batra

CPU Virtualisation Revisited

P1

Running

CPU Virtualisation Revisited

Running

CPU Virtualisation Revisited

Workload

Set of processes

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs use only the CPU
5. Run time of each job is known

Scheduling Metrics

Scheduling Metrics

Scheduling Metrics

Arrived at t1

Scheduling Metrics

Arrived at t1 Completed at t2

Scheduling Metrics

Arrived at t1 Completed at t2

Turnaround time $(\mathrm{P} 1)=\mathrm{t} 2-\mathrm{t} 1$

Scheduling Metrics

Arrived at t1 Completed at t2

Turnaround time $(\mathrm{P} 1)=\mathrm{t} 2-\mathrm{t} 1$

Scheduling Metrics

Arrived at t1 Completed at t2

Turnaround time $(\mathrm{P} 1)=\mathrm{t} 2-\mathrm{t} 1$

Scheduling Metrics

Arrived at t1 Completed at t2

Turnaround time $(\mathrm{P} 1)=\mathrm{t} 2-\mathrm{t} 1$

Scheduling Metrics

Arrived at t1 Completed at t2

Turnaround time (P1) = t2-t1
Turnaround time (P2) = t3-t1

FIFO scheduling

A, B and C come at $\mathrm{T}=0, \mathrm{O}+$ Delta, $0+2$ Delta

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

- $\mathrm{T}_{\text {completion }}(\mathrm{A})=10$
- Turnaround $(A)=10-0=0$

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

- $\mathrm{T}_{\text {completion }}(\mathrm{B})=20$
- Turnaround $(B)=20-0=20$

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0, \mathrm{O}+$ Delta, $0+2$ Delta

- $\mathrm{T}_{\text {completion }}(\mathrm{C})=30$
- Turnaround $(\mathrm{C})=30-0=30$

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0,0+$ Delta, $0+2$ Delta

Time

FIFO scheduling

A, B and C come at $\mathrm{T}=0, \mathrm{O}+$ Delta, $0+2$ Delta

Avg. Turnaround Time =
$(10+20+30) / 3=20$

Time

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs use only the CPU
5. Run time of each job is known

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs use only the CPU
5. Run time of each job is known

FIFO scheduling

FIFO scheduling

FIFO scheduling

FIFO scheduling

Avg. Turnaround Time $=$ $(30+40+50) / 3=40$
$0 \quad 1020304050$
Time

| B | | A | C | Avg. Turnaround Time $=$
 $(10+40+50) / 3$$=33.3$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

$0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50$

FIFO scheduling

FIFO scheduling

FIFO scheduling

$0 \quad 1020304050$
Time

Convoy Effect

Avg. Turnaround Time = $(10+40+50) / 3=33.3$
$0 \quad 1020 \quad 304050$
Time

Avg. Turnaround Time = $(10+20+50) / 3 \sim 27$

Shortest Job First (SJF) scheduling

Shortest Job First (SJF) scheduling

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs use only the CPU
5. Run time of each job is known

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs use only the CPU
5. Run time of each job is known

Shortest Job First (SJF) scheduling

$0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50$

Shortest Job First (SJF) scheduling

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion (Pre-emptible)
4. All jobs use only the CPU
5. Run time of each job is known

Workload Assumptions

1. Each job runs for the same time
2. All jobs arrive at the same time
3. Once started, each job runs to completion (Pre-emptible)
4. All jobs use only the CPU
5. Run time of each job is known

500 Mile Email Problem

Subject: The case of the 500-mile email (was RE: [SAGE] Favorite impossible task?)

Here's a problem that *sounded* impossible... I almost regret posting the story to a wide audience, because it makes a great tale over drinks at a conference. :-) The story is slightly altered in order to protect the guilty, elide over irrelevant and boring details, and generally make the whole thing more entertaining.

500 Mile Email Problem

I was working in a job running the campus email system some years ago when
I got a call from the chairman of the statistics department.
"We're having a problem sending email out of the department."
"What's the problem?" I asked.
"We can't send mail more than 500 miles," the chairman explained.

I choked on my latte. "Come again?"

500 Mile Email Problem

"We can't send mail farther than 500 miles from here," he repeated. "A little bit more, actually. Call it 520 miles. But no farther."
"Um... Email really doesn't work that way, generally," I said, trying to keep panic out of my voice. One doesn't display panic when speaking to a department chairman, even of a relatively impoverished department like
statistics. "What makes you think you can't send mail more than 500 miles?"

500 Mile Email Problem

"It's not what I *think*," the chairman replied testily. "You see, when we first noticed this happening, a few days ago--"
"You waited a few DAYS?" I interrupted, a tremor tinging my voice. "And
you couldn't send email this whole time?"
"We could send email. Just not more than--"
"--500 miles, yes," I finished for him, "I got that. But why didn't you call earlier?"
"Well, we hadn't collected enough data to be sure of what was going on
until just now." Right. This is the chairman of *statistics*. "Anyway, I
asked one of the geostatisticians to look into it--"

500 Mile Email Problem

"Geostatisticians..."
"--yes, and she's produced a map showing the radius within which we can
send email to be slightly more than 500 miles.
There are a number of
destinations within that radius that we can't reach, either, or reach
sporadically, but we can never email farther than this radius."
"I see," I said, and put my head in my hands. "When did this start? A
few days ago, you said, but did anything change in your systems at that time?"

500 Mile Email Problem

"Well, the consultant came in and patched our server and rebooted it.
But I called him, and he said he didn't touch the mail system."
"Okay, let me take a look, and I'll call you back," I said, scarcely
believing that I was playing along. It wasn't April Fool's Day. I tried to remember if someone owed me a practical joke.

I logged into their department's server, and sent a few test mails. This
was in the Research Triangle of North Carolina, and a test mail to my own
account was delivered without a hitch. Ditto for one sent to Richmond, and Atlanta, and Washington. Another to Princeton (400 miles) worked.

500 Mile Email Problem

But then I tried to send an email to Memphis (600 miles). It failed.
Boston, failed. Detroit, failed. I got out my address book and started
trying to narrow this down. New York (420 miles) worked, but Providence (580 miles) failed.

I was beginning to wonder if I had lost my sanity. I tried emailing a
friend who lived in North Carolina, but whose ISP
was in Seattle.
Thankfully, it failed. If the problem had had to do with the geography of
the human recipient and not his mail server, I think
I would have broken
down in tears.

500 Mile Email Problem

Having established that--unbelievably--the problem as reported was true, and repeatable, I took a look at the sendmail.cf file. It looked fairly normal. In fact, it looked familiar.

I diffed it against the sendmail.cf in my home directory. It hadn't been
altered--it was a sendmail.cf I had written. And I was fairly certain I hadn't enabled the "FAIL_MAIL_OVER_500_MILES" option. At a loss, I telnetted into the SMTP port. The server happily responded with a SunOS sendmail banner.

500 Mile Email Problem

Wait a minute... a SunOS sendmail banner? At the time, Sun was still
shipping Sendmail 5 with its operating system, even though Sendmail 8 was
fairly mature. Being a good system administrator, I had standardized on Sendmail 8. And also being a good system administrator, I had written a sendmail.cf that used the nice long self-documenting option and variable names available in Sendmail 8 rather than the cryptic punctuation-mark codes that had been used in Sendmail 5.

500 Mile Email Problem

The pieces fell into place, all at once, and I again choked on the dregs
of my now-cold latte. When the consultant had "patched the server," he
had apparently upgraded the version of SunOS, and in so doing *downgraded* Sendmail. The upgrade helpfully left the sendmail.cf
alone, even though it was now the wrong version.
It so happens that Sendmail 5--at least, the version that Sun shipped,
which had some tweaks--could deal with the Sendmail 8
sendmail.cf, as most
of the rules had at that point remained unaltered. But the new long
configuration options--those it saw as junk, and skipped. And the sendmail binary had no defaults compiled in for most of these, so, finding
no suitable settings in the sendmail.cf file, they were set to zero.

500 Mile Email Problem

One of the settings that was set to zero was the timeout to connect to the
remote SMTP server. Some experimentation established that on this
particular machine with its typical load, a zero timeout would abort a
connect call in slightly over three milliseconds.

An odd feature of our campus network at the time was that it was 100\%
switched. An outgoing packet wouldn't incur a router delay until hitting
the POP and reaching a router on the far side. So time to connect to a
lightly-loaded remote host on a nearby network would actually largely be
governed by the speed of light distance to the destination rather than by
incidental router delays.

500 Mile Email Problem

Feeling slightly giddy, I typed into my shell:
\$ units
1311 units, 63 prefixes

You have: 3 millilightseconds
You want: miles

* 558.84719
/ 0.0017893979
" 500 miles, or a little bit more."

Shortest Time to Completion (SCTF) scheduling
$0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50$

Shortest Time to Completion (SCTF) scheduling

	A				
0	10	20	30	40	50

Shortest Time to Completion (SCTF) scheduling

Shortest Time to Completion (SCTF) scheduling

Shortest Time to Completion (SCTF) scheduling

Avg. Turnaround Time $=$ $(50+(20-10)+(30-10)) / 3 \sim 27$

Metric - Response Time

- Arrives at 0

Metric - Response Time

- Arrives at 0

- Runs for first time at 0

Metric - Response Time

- Arrives at 0
- Runs for first time at 0
- Response time = 0

Metric - Response Time

Metric - Response Time

Metric - Response Time

- Arrives at 0

Metric - Response Time

- Runs for first time at 10

Metric - Response Time

- Arrives at 0
- Runs for first time at 10
- Response time $=10$

Metric - Response Time

Metric - Response Time

Metric - Response Time

- Arrives at 0

Metric - Response Time

- Arrives at 0
- Runs for first time at 20

Metric - Response Time

- Arrives at 0
- Runs for first time at 20
- Response time = 20

Metric - Response Time

Metric - Response Time

Avg. Response Time = $(0+10+20) / 3 \sim 10$

Metric - Response Time

Metric - Response Time

Metric - Response Time

Avg. Response Time = $(0+10+40) / 3 \sim 17$

Metric - Response Time

Metric - Response Time

Metric - Response Time

Avg. Response Time = $(0+30+40) / 3 \sim 23$

Metric - Response Time

Metric - Response Time

01020304050

None of the previous policies particularly good for response time

Round Robin

Round Robin

Time

Round Robin

Response Time $=(10+20+0) / 3=10$
 $0 \quad 10 \quad 20 \quad 30$

Time

Round Robin

Response Time $=(10+20+0) / 3=10$
 Turnaround Time $=(10+20+30) / 3=20$
 $0 \quad 10 \quad 20 \quad 30$

Time

Round Robin

Time

Time

Round Robin

Time

Response Time $=(0+5+10) / 3=5$

Time

Round Robin

Time

Response Time $=(0+5+10) / 3=5$
Turnaround Time $=(20+25+30) / 3=25$

Time

