
Operating Systems
MLFQ + Limited Direct Execution

Nipun Batra

MLFQ - Revision

 2

MLFQ - Revision

 2

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: When a job enters the system, it is placed at the

highest priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

Practice Session

 3

./mlfq.py -s 5 -Q 2,10,15 -n 3 -j 3 -M 0 -m 30 -c

Practice Session

 4

./mlfq.py --jlist 0,40,0:20,20,0 -Q 5,10,10 -c

Practice Session

 5

./mlfq.py --jlist 0,40,0:10,20,0:20,30,0 -Q 5,10,10 -c -B 50

 6

./mlfq.py -c

Practice Session

 7

Practice Session

More Topics

 8

Will cover after remaining topics are finished:
1. Lottery scheduling
2. Multi-CPU scheduling (needs concurrency

background)
3. Inter-process communication (IPC)

 9

P1

P2 P3 P1

Running

Want to run

OS
Scheduler

P2

Should
run

Low level
mechanisms

(Context
switch)

Which program
to run

How to run

CPU Virtualisation Revisited

Process Control Block (PCB)

 10

Process Control Block (PCB)

 10

Data structure for process information

Process Control Block (PCB)

 10

Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
PID

Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
PID
Current execution

Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
PID
Current execution

Various CPU registers

Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
PID
Current execution

Various CPU registers

Management of page table etc.

Data structure for process information

Process Control Block (PCB)

 10

Running, Blocked, Ready
PID
Current execution

Various CPU registers

Management of page table etc.

CPU scheduling information:
Priority, Run time, etc.

Data structure for process information

PCB in XV6

 11

Process Table

 12Could it be a linked list?

Core Challenges in CPU Virtualisation
Mechanisms

 13

Core Challenges in CPU Virtualisation
Mechanisms

 13

1. Performance - Minimise OS overhead

Core Challenges in CPU Virtualisation
Mechanisms

 13

1. Performance - Minimise OS overhead
2. Control - OS should maintain control

Core Challenges in CPU Virtualisation
Mechanisms

 13

1. Performance - Minimise OS overhead
2. Control - OS should maintain control

1. Imagine OS schedules a process with infinite loop

Core Challenges in CPU Virtualisation
Mechanisms

 13

1. Performance - Minimise OS overhead
2. Control - OS should maintain control

1. Imagine OS schedules a process with infinite loop
2. We saw priority reduces over time in MLFQ

Direct Execution

 14

OS Program

Direct Execution

 14

1. Create entry for process

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory

Direct Execution

 14

1. Create entry for process
2. Allocate memory for

process
3. Load program into memory
4. Set up stack
5. Execute call main()

1. Run main()
2. Execute return from main

OS Program

1. Free memory
2. Remove process from

process list

Direct Execution Challenges

 15

Direct Execution Challenges

 15

1. How would OS stop the current process and run
another

Direct Execution Challenges

 15

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

Restricted Operations

 16

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
illegal access (issuing I/O)

• Do we stop accessing I/O and network?

• Goal: A process must be able to perform I/O and
some other restricted operations, but without
giving the process complete control over the
system.

 17

Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode

 17

Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode
1. Restricted mode -

can not issue IO

 17

Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

 17

Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

 17

Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode
1. Restricted mode -

can not issue IO
2. If tries to issue IO or

restricted operation,
exception raised

Code can issue IO.
Mode that OS runs in.

Syscall
(Trap

Instruction)

 18

Kernel v/s User mode

• In kernel mode, the CPU has instructions to manage memory
and how it can be accessed, plus the ability to access peripheral
devices like disks and network cards. The CPU can also switch
itself from one running program to another. 

• In user mode, access to memory is limited to only some memory
locations, and access to peripheral devices is denied. The ability
to keep or relinquish the CPU is removed, and the CPU can be
taken away from a program at any time.

Pop Quiz

 19

Interrupt v/s Polling?

