Operating Systems

MLFQ + Limited Direct Execution

Nipun Batra



ML

- Revision



MLFQ - Revision

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
o Rule 2: If Priority(A) = Priority(B), A & B run in RR.
 Rule 3: When a job enters the system, it is placed at the

nighest priority (the topmost queue).
* Rule 4: Once a job uses up its time allotment at a given

evel (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.



Practice Session

jobs 3

queues 3

quantum length for queue 2 1is P
quantum length for queue 1 is 10
quantum length for queue 0 1s 15
boost O

ioTime 5

stayAfterIO False

iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every ioFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Job List:
Jobia 0t startlame O = EliRiEime 19 = oEEed
Job 1: startTime O - runTime 24 - ioFregq
Job 2" startTime @ = EUpTime 22 - ioErEeq




Practice Session

——jlist 0,40,0:20,20,0 —Q 5,10,10 —C

OPTIONS

OPTIONS queues 3

OPTIONS quantum length for queue 2 is 5
OPTIONS quantum length for queue 1 is 10
OPTIONS quantum length for queue 0 is 10
OPTIONS boost ©

OPTIONS ioTime 5

OPTIONS stayAfterIO False

OPTIONS iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every ioFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

Job List:
Job @: startTime @ - runTime 40 - ioFreq
Job 1: startiime 20 - runTime 20 - ioFreq




Practice Session

./mlfq.py ——jlist 0,40,0:10,20,0:20,30,0 —Q 5,10,10 —-c —-B 50

jobs 3
queues 3
quantum length for queue 2 is 5
quantum length for queue 1 is 10
quantum length for queue 0 is 10
boost 50
ioTime 5
stayAfterIO False

OPTIONS iobump False

For each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every ioFreq time units, the job issues an I/0

(the I/0 takes ioTime units to complete)

ob 1 Gk

Job @: startTime @ - runTime 40 - ioFregq
Job 1: stalrtTime 10 - ruUnTime 20 - 1oFreq
Job 2: startTime 20 - runTime 30 - 1oFreq




Practice Session

./mlfg.py —-cC

the list of inputs:
jobs 3
DPTIONS queues 3
J)PTIONS quantum length for queue 2 1is 10
J)PTIONS quantum length for queue 1 1s 10
DPTIONS quantum length for queue 0 is 10
boost @
DPTIONS ioTime 0
DPTIONS stayAfterIO False

or each job, three defining characteristics are given:
startTime : at what time does the job enter the system
runTime : the total CPU time needed by the job to finish
ioFreq : every 1oFreq time units, the job 1ssues an I/0
(the I/0 takes ioTime units to complete)

o)) [L1lSek
Job 0: startTime O - runTime 84 - ioFreq
Job 1: startTime @ - runTime 42 - ioFreq
Job 2@ startliime O = rFunliime 51 - ioFreg




Practice Session

4. 110V vwoullu yuu I1UILL UIC 5CIICUUICL LV J.CPJ.UUL[L'C Cdlll Ul LI1C CTAXAdILL~
ples in the chapter?

3. How would you configure the scheduler parameters to behave just
like a round-robin scheduler?

4. Craft a workload with two jobs and scheduler parameters so that
one job takes advantage of the older Rules 4a and 4b (turned on
with the -S flag) to game the scheduler and obtain 99% of the CPU
over a particular time interval.

. Given a system with a quantum length of 10 ms in its highest queue,
how often would you have to boost jobs back to the highest priority

level (with the -B flag) in order to guarantee that a single long-
running (and ' job gets at least 5% of the CPU?

0. Une question that arises 1in scheduling 1s which ena of a queue to
add a job that just finished I/0O; the -I flag changes this behavior
for this scheduling simulator. Play around with some workloads
and see if you can see the effect of this flag.




More Topics

Will cover after remaining topics are finished:

1. Lottery scheduling

2. Multi-CPU scheduling (needs concurrency
background)

3. Inter-process communication (IPC)




CPU Virtualisation Revisited

Want to run

How to run

ON'

Running Should Scheduler

run N

Low level
mechanisms
(Context
switch)

Which program
{0 run



Process Control

3lock |

20

10



Process Control

Data structure tfor process information

3lock |

20

5)

10



Process Control

Data structure tfor process information

3lock |

process state

process number

program counter

registers

memory limits

list of open files

20

5)

10



2rocess Control Block (PCB)

Data structure tfor process information

process state Running, Blocked, Ready
process number

program counter

registers

memory limits

list of open files




2rocess Control Block (PCB)

Data structure tfor process information

process state Running, Blocked, Ready
process number °1D

program counter

registers

memory limits

list of open files




2rocess Control Block (PCB)

Data structure tfor process information

process state Running, Blocked, Ready
process number °1D

program counter Current execution

registers

memory limits

list of open files




2rocess Control Block (PCB)

Data structure tfor process information

process state Running, Blocked, Ready
process number °1D

program counter Current execution

registers Various CPU registers

memory limits

list of open files




2rocess Control Block (PCB)

Data structure tfor process information

process state Running, Blocked, Ready
process number °1D

program counter Current execution

registers Various CPU registers

memory limits Management of page table etc.
list of open files




Process Control

Slock (PCB)

Data structure tfor process information

process state

Running, Blocked, Ready

process number

P[D

program counter

Current execution

registers

Various CPU registers

memory limits

list of open files

CPU scheduling information:
Priority, Run time, etc.

Management of page table etc.

10



20

S 1IN XVEO

// the registers xv6 will save and restore
// to stop and subsequently restart a process

struct context {
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esij;
int edi;
int ebp;
i

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO,

SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

// the information X¥6 tracks about each process
// including its register context and state

struct proc {
char *mem;
uint sz;
char =xkstack;

enum proc_state state;

int pid;

struct proc xparent;

void =*chan;

int killed;

struct file xo0file[NOFILE];
struct inode xcwd;

struct context context;
struct trapframe xtf;

}i

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Start of process memory
Size of process memory
Bottom of kernel stack

for this process

Process state

Process ID

Parent process

If !zero, sleeping on chan
If !zero, has been killed
Open files

Current directory

Switch here to run process
Trap frame for the

current interrupt

11



Process laple

PID PLB

WN) =

PCB

PCB
PID 1 I I PID 2

Process table and process control block

Could it be a linked list?

12



Core Cr

enges in C

Mechan

TS

U Virtualisation

13



1.

Core Challenges in CPU Virtualisation
\Vechanisms

Performance - Minimise OS overhead

13



Core Challenges in CPU Virtualisation
\Vechanisms

2. Control - OS should maintain control

13



Core Challenges in CPU Virtualisation
\Vechanisms

1.

Imagine OS schedules a process with infinite loop

13



Core Challenges in CPU Virtualisation
\Vechanisms

2. We saw priority reduces over time in MLFQ

13



Direct Execution
OS

Program

14



1.

Direct Execution
OS

Create entry for process

Program

14



Direct Execution
OS

2. Allocate memory for
ProCess

Program

14



Direct Execution
OS

3. Load program into memory

Program

14



Direct Execution
OS

4. Set up stack

Program

14



Direct Execution
OS

5. Execute call main()

Program

14



Direct Execution
OS

5. Execute call main()

1.

Program

Run main()

14



Direct Execution
OS

5. Execute call main()

Program

2. Execute return from main

14



Direct Execution
OS

5. Execute call main()

1.

Free memory

Program

2. Execute return from main

14



Direct

—Xecution

0S

5. Execute call main()

2. Remove process from
process list

Program

2. Execute return from main

14



Direct

—xecution Challenges

15



Direct Execution Challenges

1. How would OS stop the current process and run
another

15



Direct Execution Challenges

2. How does OS ensure that the program doesn’t make
llegal access (issuing 1/O)

15



Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make
llegal access (issuing 1/O)

16



Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

16



Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

16



Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

* Do we stop accessing I/O and network?

16



Restricted Operations

1. How would OS stop the current process and run
another

2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

16



Restricted Operations

1. How would OS stop the current process and run
another
2. How does OS ensure that the program doesn’t make

llegal access (issuing 1/O)

* (Goal: A process must be able to perform |/O and
some other restricted operations, but without
giving the process complete control over the
system.

16



Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode

17



Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode

1. Restricted mode -
can not issue |0

17



Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode

2. If tries to issue 10 or
restricted operation,
exception raised

17



Restricted Operations

CPU Modes (hardware register to indicate)

Kernel Mode User Mode

Code can issue 10.
Mode that OS runs in.

2. If tries to issue 10 or
restricted operation,
exception raised

17



Restricted Operations

CPU Modes (hardware register to indicate)

Syscall
(Trap

Kernel Mode «—_Instruction) User Mode

Code can issue 10.
Mode that OS runs in.

2. If tries to issue 10 or
restricted operation,
exception raised

17



Kermel v/s User mode

* In , the CPU has instructions to manage memory

and how it can be accessed, plus the ability to access peripheral
devices like disks and network cards. The CPU can also switch

itself from one running program to another.

* In , access to memory is limited to only some memory
locations, and access to peripheral devices is denied. The ability
to keep or relinquish the CPU is removed, and the CPU can be

taken away from a program at any time.

18



2op QUIZ

Interrupt v/s Polling”

19



