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Motivation

What good is a computer without any I/O devices? 
 - keyboard, display, disks 

We want: 
 - H/W that will let us plug in different devices 
 - OS that can interact with different combinations 

Largely a communication problem…
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CPU RAM

Graphics

Memory Bus
General I/O Bus 
(e.g., PCI)

Peripheral I/O Bus 
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?

System Architecture



Canonical Device
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Canonical Device
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Status COMMAND DATA

OS reads/writes to these

Hidden Internals: ???

Device Registers:



Canonical Device

9

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals:
Microcontroller (CPU+RAM) 
Extra RAM 
Other special-purpose chips



Example Protocol

while (STATUS == BUSY) 
 ; // spin 
Write data to DATA register 
Write command to COMMAND register 
while (STATUS == BUSY) 
 ; // spin
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;

19

2 4
3

A B

C A

CPU:

Disk:

Example



1

while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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while (STATUS == BUSY)             // 1 
 ; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 ;
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3

A B

C A

how to avoid spinning? 
interrupts!

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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Interrupts vs. Polling

Discuss: are interrupts ever worse?

24



Interrupts vs. Polling

Discuss: are interrupts ever worse? 

Interrupts can sometimes lead to livelock 
 - e.g., flood of network packets
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Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

• hybrid approach
• Poll for a while, then wait for interrupts

• interrupt coalescing
• Coalesce or combine the delivery of multiple 

interrupts
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Protocol Variants

Status checks: polling vs. interrupts 

Data: PIO vs. DMA 

Control: special instructions vs. memory-mapped I/O
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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What else can we optimize? 
Data transfer!



Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O): 
 - CPU directly tells device what data is 

DMA (Direct Memory Access): 
 - CPU leaves data in memory 
 - DMA device does copy
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PIO Flow
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DMA Flow

32

CPU RAM

Disk



while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
initiate DMA transfer              // 2a 
wait for interrupt                 // 2b 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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Protocol Variants

Status checks: polling vs. interrupts 

Data: PIO vs. DMA 

Control: special instructions vs. memory-mapped I/O
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ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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How does OS read and write registers?



Special Instructions vs. Mem-Mapped I/O
Special instructions 
 - each device has a port 
 - in/out instructions (x86) communicate with device 

Memory-Mapped I/O 
 - H/W maps registers into address space 
 - loads/stores sent to device 

Doesn’t matter much (both are used).
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Variety is a Challenge
Problem: 
 - many, many devices 
 - each has its own protocol 

How can we avoid writing a slightly different OS for 
each H/W combination?
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Solution

Encapsulation! 

Write driver for each device. 

Drivers are 70% of Linux source code.
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Solution

Encapsulation! 

Write driver for each device. 

Drivers are 70% of Linux source code. 

Encapsulation also enables us to mix-and-match 
devices, schedulers, and file systems.
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Storage Stack
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Storage Stack

44

application
file system
scheduler

driver
hard drive

build common interface 
on top of all HDDs

what about special 
capabilities?



Hard-disk Basic Interface
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Hard-disk Basic Interface

Disk has a sector-addressable address space
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Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

Sectors are typically 512 bytes or 4096 bytes.

Main operations: reads + writes to sectors (blocks).
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Platter

Hard-disk Basic Interface
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Platter

Hard-disk Basic Interface

Platter is covered with a magnetic film.
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Spindle

Hard-disk Basic Interface
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Surface

Surface

Hard-disk Basic Interface
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Many platters may be bound to the spindle.

Hard-disk Basic Interface
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Hard-disk Basic Interface
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Each surface is divided into rings called tracks. 
A stack of tracks (across platters) is called a cylinder.

Hard-disk Basic Interface
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The tracks are divided into numbered sectors.
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Heads on a moving arm can read from each surface.
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spin

Spindle/platters rapidly spin.

Hard-disk Basic Interface



Don’t try this at home!

http://youtu.be/9eMWG3fwiEU?t=30s 
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Let’s Read 12!
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Seek to right track.
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Seek to right track.
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Seek to right track.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Transfer data.
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Transfer data.
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Transfer data.
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Yay!
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Seek, Rotate, Transfer
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Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

Settling alone can take 0.5 - 2 ms.

Entire seek often takes 4 - 10 ms.
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Seek, Rotate, Transfer
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Seek, Rotate, Transfer

Depends on rotations per minute (RPM).

71



Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

71



Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

71



Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =

71



Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =
1 minute / 7200 rotations = 

71



Seek, Rotate, Transfer
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1 second / 120 rotations =
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Seek, Rotate, Transfer

Depends on rotations per minute (RPM). 
 - 7200 RPM is common, 15000 RPM is high end. 

1 / 7200 RPM = 
1 minute / 7200 rotations =  
1 second / 120 rotations = 
12 ms / rotation

72

so it may take 6 ms 
on avg to rotate to 
target (0.5 * 12 ms)



Seek, Rotate, Transfer
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Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.
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Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.
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1s / 100 MB = 10 ms / MB = 4.9 us / sector
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Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical.

1s / 100 MB = 10 ms / MB = 4.9 us / sector
(assuming 512-byte sector)
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Workload
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Workload
So… 
 - seeks are slow 
 - rotations are slow 
 - transfers are fast 

What kind of workload is fastest for disks? 
Sequential: access sectors in order (transfer dominated) 
Random: access sectors arbitrarily (seek+rotation dominated)
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Demos: example-rand.csh and example-seq.csh



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Sequential workload: what is throughput for each?



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Cheeta: 125 MB/s. 
Barracuda: 105 MB/s.



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
(what else do you need to know?)



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
Assume 16-KB reads.



Disk Spec
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Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
Assume 16-KB reads.
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation = 
1
2

1 min
15000
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation = 
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

 = 2 ms



85

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer = 
1 sec

125 MB
16 KB

1,000,000 us
1 sec

= 125 us
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput = 
16 KB
6.1ms
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput = 
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec

= 2.5 MB/s
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation = 
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

 = 4.1 ms
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer = 
1 sec

105 MB
16 KB

1,000,000 us
1 sec

= 149 us
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput = 
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput = 
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

= 1.2 MB/s


