
Operating Systems
I/0 devices

Nipun Batra

Motivation

What good is a computer without any I/O devices?
 - keyboard, display, disks

We want:
 - H/W that will let us plug in different devices
 - OS that can interact with different combinations

Largely a communication problem…

2

3

CPU RAM

Memory Bus

System Architecture

4

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g., PCI)

System Architecture

5

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?

System Architecture

Canonical Device

6

Status COMMAND DATADevice Registers:

Canonical Device

7

Status COMMAND DATA

OS reads/writes to these

Device Registers:

Canonical Device

8

Status COMMAND DATA

OS reads/writes to these

Hidden Internals: ???

Device Registers:

Canonical Device

9

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Example Protocol

while (STATUS == BUSY)
 ; // spin
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)
 ; // spin

10

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

11

CPU:

Disk:

Example

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

12

A

C

CPU:

Disk:

Example

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

13

A

C

A wants to do I/O
CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

14

A

C

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

15

2

A

AC

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

16

2

A

AC

3

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

17

2 4
3

A

C A

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

18

2 4
3

A

C A

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

19

2 4
3

A B

C A

CPU:

Disk:

Example

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

20

2 4
3

A B

C A

CPU:

Disk:

Example

How to avoid spinning?

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

21

2 4
3

A B

C A

CPU:

Disk:

Example

How to avoid spinning?
Interrupts!

1 2 4
3

A B

C A

how to avoid spinning?
interrupts!

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

22

CPU:

Disk:

Example

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

23

2
3,4

A B

C A

how to avoid spinning?
interrupts!

B B AA

1

CPU:

Disk:

Example

Interrupts vs. Polling

Discuss: are interrupts ever worse?

24

Interrupts vs. Polling

Discuss: are interrupts ever worse?

Interrupts can sometimes lead to livelock
 - e.g., flood of network packets

25

Interrupts vs. Polling

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

• hybrid approach

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

• hybrid approach
• Poll for a while, then wait for interrupts

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

• hybrid approach
• Poll for a while, then wait for interrupts

• interrupt coalescing

26

Interrupts vs. Polling

• Discuss: are interrupts ever worse?
• Interrupts can sometimes lead to livelock

• e.g., flood of network packets
• Techniques:

• hybrid approach
• Poll for a while, then wait for interrupts

• interrupt coalescing
• Coalesce or combine the delivery of multiple

interrupts

26

Protocol Variants

Status checks: polling vs. interrupts

Data: PIO vs. DMA

Control: special instructions vs. memory-mapped I/O

27

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

28

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

29

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

29

2
3,4

A BCPU:

Disk: C A

B B AA

1

What else can we optimize?

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

29

2
3,4

A BCPU:

Disk: C A

B B AA

1

What else can we optimize?
Data transfer!

Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O):
 - CPU directly tells device what data is

DMA (Direct Memory Access):
 - CPU leaves data in memory
 - DMA device does copy

30

PIO Flow

31

CPU RAM

Disk

DMA Flow

32

CPU RAM

Disk

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

33

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
initiate DMA transfer // 2a
wait for interrupt // 2b
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

34

2b,3,4

A BCPU: B B A

1

DMA:

Disk: C A

A

2a

B

Protocol Variants

Status checks: polling vs. interrupts

Data: PIO vs. DMA

Control: special instructions vs. memory-mapped I/O

35

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

36

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

37

How does OS read and write registers?

Special Instructions vs. Mem-Mapped I/O
Special instructions
 - each device has a port
 - in/out instructions (x86) communicate with device

Memory-Mapped I/O
 - H/W maps registers into address space
 - loads/stores sent to device

Doesn’t matter much (both are used).

38

Variety is a Challenge
Problem:
 - many, many devices
 - each has its own protocol

How can we avoid writing a slightly different OS for
each H/W combination?

39

Solution

Encapsulation!

Write driver for each device.

Drivers are 70% of Linux source code.

40

Solution

Encapsulation!

Write driver for each device.

Drivers are 70% of Linux source code.

Encapsulation also enables us to mix-and-match
devices, schedulers, and file systems.

41

Storage Stack

42

application
file system
scheduler

driver
hard drive

Storage Stack

43

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

Storage Stack

44

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

what about special
capabilities?

Hard-disk Basic Interface

45

Hard-disk Basic Interface

Disk has a sector-addressable address space

45

Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

45

Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

45

Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

Sectors are typically 512 bytes or 4096 bytes.

45

Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

Sectors are typically 512 bytes or 4096 bytes.

45

Hard-disk Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).

Sectors are typically 512 bytes or 4096 bytes.

Main operations: reads + writes to sectors (blocks).

45

46

Platter

Hard-disk Basic Interface

46

Platter

Hard-disk Basic Interface

Platter is covered with a magnetic film.

47

Spindle

Hard-disk Basic Interface

48

Surface

Surface

Hard-disk Basic Interface

49

Many platters may be bound to the spindle.

Hard-disk Basic Interface

50

Hard-disk Basic Interface

51

Each surface is divided into rings called tracks.
A stack of tracks (across platters) is called a cylinder.

Hard-disk Basic Interface

52

The tracks are divided into numbered sectors.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Hard-disk Basic Interface

53

Heads on a moving arm can read from each surface.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Hard-disk Basic Interface

54

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

spin

Spindle/platters rapidly spin.

Hard-disk Basic Interface

Don’t try this at home!

http://youtu.be/9eMWG3fwiEU?t=30s

55

http://youtu.be/9eMWG3fwiEU?t=30s

Let’s Read 12!

56

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Seek to right track.

57

1
2

3

0
6
5 4

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20

Seek to right track.

58

1
2

3

0
6
5 4

7
8 9

10

11

15

14

13
12

16
17

18

19

23

22

21
20

Seek to right track.

59

1
2

3

0
6

5 4

7

8 9
10

11

15

14
13 12

16 17

18

19

23

22

21 20

Wait for rotation.

60

1 2
3

0
6 5 4

7
8 9

10
11

15
14

13 12

16

17

18
19

23
22

21

20

Wait for rotation.

61

1 2
30

6 5
47

8
9 10

11

15
14 13

12

16

17 18

19

23

22 21

20

Wait for rotation.

62

1
2 3

0 6
5
4

78

9
10 11

15 14
13

12

16

17

18 19

23 22

21

20

Wait for rotation.

63

1
2

3

0
6
54

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20

Wait for rotation.

64

1
2

3
0

6
54

7
89

10
11

15
14

1312

1617

18
19

23
22

2120

Wait for rotation.

65

12
3 0

65
4 7

8
910

11

15
1413

12

16

1718

19

23

2221

20

Transfer data.

66

123

0
65

4

7 8
9

10

11

15

1413
12

16
17

18

19

23

22

21
20

Transfer data.

67

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

1819

2322

21

20

Transfer data.

68

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

18
19

23
22

21

20

Yay!

69

1
23

06
5

4

7
8

9
10

11

15
14

13

12

16

17

18
19

23

22

21

20

Seek, Rotate, Transfer

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

Settling alone can take 0.5 - 2 ms.

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

Settling alone can take 0.5 - 2 ms.

70

Seek, Rotate, Transfer

Must accelerate, coast, decelerate, settle

Seeks often take several milliseconds!

Settling alone can take 0.5 - 2 ms.

Entire seek often takes 4 - 10 ms.

70

Seek, Rotate, Transfer

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =
1 minute / 7200 rotations =

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =
12 ms / rotation

71

Seek, Rotate, Transfer

Depends on rotations per minute (RPM).
 - 7200 RPM is common, 15000 RPM is high end.

1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =
12 ms / rotation

72

so it may take 6 ms
on avg to rotate to
target (0.5 * 12 ms)

Seek, Rotate, Transfer

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical.

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical.

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical.

1s / 100 MB = 10 ms / MB = 4.9 us / sector

73

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical.

1s / 100 MB = 10 ms / MB = 4.9 us / sector
(assuming 512-byte sector)

73

Workload

74

Workload
So…

74

Workload
So…
 - seeks are slow

74

Workload
So…
 - seeks are slow
 - rotations are slow

74

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast

74

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast

74

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast

What kind of workload is fastest for disks?

74

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast

What kind of workload is fastest for disks?

74

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast

What kind of workload is fastest for disks?
Sequential: access sectors in order (transfer dominated)
Random: access sectors arbitrarily (seek+rotation dominated)

75

Demos: example-rand.csh and example-seq.csh

Disk Spec

76

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Disk Spec

77

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Sequential workload: what is throughput for each?

Disk Spec

78

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Cheeta: 125 MB/s.
Barracuda: 105 MB/s.

Disk Spec

79

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
(what else do you need to know?)

Disk Spec

80

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
Assume 16-KB reads.

Disk Spec

81

Cheetah Barracuda
Capacity 300 GB 1 TB

RPM 15,000 7,200
Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
Assume 16-KB reads.

82

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

83

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation =
1
2

1 min
15000

84

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation =
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

 = 2 ms

85

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer =
1 sec

125 MB
16 KB

1,000,000 us
1 sec

= 125 us

86

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

87

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB
6.1ms

88

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec

= 2.5 MB/s

89

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

90

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation =
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

 = 4.1 ms

91

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer =
1 sec

105 MB
16 KB

1,000,000 us
1 sec

= 149 us

92

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput =
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

93

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput =
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

= 1.2 MB/s

