
-g command
includes debugging

information

Use gcc –g –o to make
the ‘executable’ file

Then, run gdb by
typing ‘gdb executable’

GDB

To insert breakpoints in
the program and display

the next line to be

executed, use ‘b line
number’ or

use ‘b main’

Press ‘r’ or ‘run’
to run the program.
At the checkpoint,
you can execute
one line at a time
using the command

‘n ’ or ‘next’

Still how do I
know the values

of the

variables?!

To print the value
of the variable

use the command

‘p variable_name’

That’s awesome!
Now, how can I go and
see what is happening

inside a function?

To step into a function
without running it, instead of

using the ‘next’ command,
use the command

‘s’ or ‘step’.

You can also view the
program stack by running

the command

‘bt’ or ‘backtrace’

If your stack
looks like –

#0 sum (a=5, b=6)
#1 in main ()

you can go back to the
main function by using

the command ‘up’

To see the code lines
at the point you have

stopped use the
command

‘l’ or ‘list’.

I finally found my

mistake using gdb!

Yayy!
Now I can run my

program!!

Now to exit the
debugging mode and

correct your program

type ‘quit’

Why don’t you
use gdb for
debugging!!

Why don’t you use

gdb for
debugging!!

What
happened?

I am getting an

error in my C
program!

Segmentation Fault
Core Dumped

#include <stdio.h>

int sum (int a, int b) {

int s;

s = a + b;

return s;

}

int main() {

int x, y, z;

scanf("%d", &x);

scanf("%d", &y);

z = sum (x, y);

printf(“Sum = %d", z);

return 0;

}

next

step

next

run

next

By: Dhruvi Lodhavia (18110050) & Udit Vyas (18110176)

Image Source: ComicGen

https://gramener.com/comicgen/#?name=ava&emotion=smile&pose=handsonhip&ext=png&mirror=&x=-35&y=-23&scale=1&width=500&height=600

