Operating Systems
Viemory Virtualisation
Base & Bounds + segmentation

Nipun Batra

(General Address Translation

Kernel

CPU MMU Physical Memory

(] N b
= ‘
=7 :
= 1
= ;
=
=o =
© S
-~ =
o~
m
(G
<
m g

(General Address Translation

Kernel

CPU MMU Physical Memory
Virtual Address

(] N b
= ‘
=7 :
= 1
= :
=
=o =
" S
-~ =
o~
m
(G
<
m g

(General Address Translation

Kernel
CPU MMU Physical Memory
Virtual Address
0Ox10102030

(] N b
= ‘
=7 :
= 1
= :
=
=o =
" S
-~ =
o~
m
(G
<
m g

(General Address Translation

Kernel

CPU MMU Physical Memory

Virtual Address/
0Ox10102030

(] N b
= ‘
=7 :
= 1
= :
=
=o =
" S
-~ =
o~
m
(G
<
m g

(General Address Translation

Kernel

CPU MU Physical Memory

Virtual Address/
0Ox10102030

(] N b
= ‘
=7 :
= 1
= :
=
=o =
" S
-~ =
o~
m
(G
<
m g

(General Address Translation

K rnfl

CPU MU Physical Memory

Virtual Address/
0Ox10102030

(] N b
= ‘
=7 :
= 1
= :
=
=o =
" S
-~ =
o~
m
(G
<
m g

(General Address Translation

K rnfl

CPU MU Physical Memory

Virtual AOIOIreSSAsical Address
0x10102030

(] N b
= ;
= :
= :
— :
—
= bl
=3 2
= =
N
m
o
<
m U

(General Address Translation

K rnfl

CPU MU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030 0x104130

(] N b
= ;
= :
= :
— :
—
= bl
=3 2
= =
N
m
o
<
m U

(General Address Translation

(fyjf

CPU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030

0x104130

(l-\‘,m,»-‘."‘
@R 5 v o Gt @S BELD -
Lo Fie b
- - o+
L £ . .
g
=
(&
f Yo S §

(] N b
= ;
= :
= :
— :
—
= bl
=3 2
= =
N
m
o
<
m U

(General Address Translation

[7

CPU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030

0x104130

(l-u;w,»l‘."‘
IR 5w By B RV B <
5 £ie i
- - =
L £ ¢
g
g
1
€ e

0 PR . 0 i
= :
=7 i
= :
— :
—
=0 =
s S
= =
N
o
[©]
<
@
m ¢

What it you want to translate same
virtual address again?

(General Address Translation

(fyjf

CPU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030

0x104130

(l-\‘,m,»-‘."‘
@R 5 v o Gt @S BELD -
Lo Fie b
- - o+
L £ . .
g
=
(&
f Yo S §

(] N b
= ;
= :
= :
— :
—
= bl
=3 2
= =
N
m
o
<
m U

(General Address Translation

[7

CPU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030

0x104130

(l-u;w,»l‘."‘
IR 5w By B RV B <
Lo Fie b
- - o+
| 4 £ . .
g
£
(&
f Yo S §

(] N b
= ;
=7 i
= :
— :
—
= bl
S S
= =
N
m
o
<
oo
m U

Cachel!!

(General Address Translation

[7

CPU Physical Memory
Virtual AOIOIreSSAsical Address
0x10102030

What do you do with cache if there
IS a context switch?

(] N b
= ;
=7 i
= :
— :
—
= bl
S S
= =
N
m
o
<
oo
m U

Dynamic (Hardware-based) Relocation
Sase & Bounas

Kernel

CPU MMU Physical Memory

e o0
= *
= :
— :
= :
—
=0 =
= Py
- =
o
o
)
<
m .

Dynamic (Hardware-based) Relocation
Sase & Bounas

Kernel

CPU MMU Physical Memory
Virtual Address

e o0
= *
= :
— :
= :
—
=0 =
= Py
- =
o
o
)
<
m .

Dynamic (Hardware-based) Relocation
Sase & Bounas

Kernel
CPU MMU Physical Memory
Virtual Address
0x100

e o0
= *
= :
— :
= :
—
=0 =
= Py
- =
o
o
)
<
m .

Dynamic (Hardware-based) Relocation
Sase & Bounas

Kernel

CPU MMU Physical Memory

Virtual Address/
0x100

(] N b
= ;
= :
= :
— :
—
= bl
=3 2
= =
N
m
o
<
m U

Dynamic (Hardware-based) Relocation
Sase & Bounas

Kernel

CPU MU Physical Memory

Virtual Address/
0x100

0 PR . 0 1t
= :
= :
= :
— :
—
=0 =
=5 o
= =
o~
o
o
<
m <

Dynamic (Hardware-based) Relocation
Sase & Bounds
K rnfl

CPU MU Physical Memory

Virtual Address/
0x100

0 PR . 0 1t
= :
= :
= :
— :
—
=0 =
=5 o
= =
o~
o
o
<
m <

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory
Virtual AddreSS Base : 0X1000

0x100 Bounds: 0X300

[o Lt AL
E" :
Eo =
= P
- =
o
o
[T)
-4
o
m g

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory
Virtual AddreSS Base : 0X1000

0x100 Bounds: 0X300

Physical Address = 0X1000 + 0X100

g r '
E" :
Eﬁ ‘
Eo =
="
~
o
O
<<
o ¢

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory
Virtual AddreSS Base : 0X1000

0x100 Bounds: 0X300

Physical Address = 0X1000 + 0X100

g r '
E" :
Eﬁ ‘
Eo =
="
~
o
O
<<
o ¢

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual Address Base : 0X1000
OX1OO Bounds: OX300

0X1000

0X1000 + OX300 (88

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual Address Base : 0X1000
OX1OO Bounds: OX300

0X1000

0X1000 + OX300 (88

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual Address Base : 0X1000
OX1OO Bounds: OX300

0X1000

0X1000 + OX300 (88

1. When do you think base and bounds
register will be set up?

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual Address Base : 0X1000
OX1OO Bounds: OX300

0X1000

0X1000 + OX300 (88

2. What happens when context Is
switched?

Dynamic (Hardware-pased)

~elocation

Dynamic (Hardware-pased)

1. Base and Bound registers

~elocation

Dynamic (Hardware-pased)

2. Allows:

~elocation

Dynamic (Hardware-based) Relocation

1. Place address space anywhere in memory (not just
at location 0)

Dynamic (Hardware-based) Relocation

2. Ensures process only accesses Its own space

Dynamic (Hardware-pased)

=elocation

Dynamic (Hardware-based)

=elocation

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

Heap

(allocated but not in use)

T

Stack

(not in use)

Relocated Process

Dynamic (Hardware-based)

=elocation

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(allocated put nlot In use)
KB]

(not in use)

Relocated Process

Dynamic (Hardware-based)

1. Base

=elocation

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(allocated put nlot In use)
KB ’

(not in use)

Relocated Process

Dynamic (Hardware-based) Relocation

1. Base
1. OS decides where in physical
address to load the address
space

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

128 o 0
13230008,
3

(allocatea put not in use)

(not in use)

Relocated Process

Dynamic (Hardware-based) Relocation

1. Base
1. OS decides where in physical
address to load the address
space

2. In previous example, base Is
f?

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

128 o
13230008,
135w

(allocatea put not in use)

(not in use)

Relocated Process

Dynamic (Hardware-based) Relocation

1. Base
1. OS decides where in physical
address to load the address
space

2. In previous example, base Is
r?

3 Ans: 32 KB

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(allocatea put not in use)

(not in use)

Relocated Process

—xample Revisited

—xample Revisited

1. PC points to 128

—xample Revisited

1. PC points to 128
2. Fetch instruction :

—xample Revisited

1. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896

—xample Revisited

1. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
3. Execute load:

—xample Revisited

1. PC points to 128
2. Fetch instruction :

1. Physical Address = Base + Virtual Address = 32K +
128 = 32896

3. Execute load:
1. Data resides in Virtual Address 15 KB

—xample Revisited

. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB =47 KB

—xample Revisited

1. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
3. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
4. Pop quiz - why is it called dynamic relocation?

—xample Revisited

1. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
3. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
4. Pop quiz - why is it called dynamic relocation”
1. Relocation happens at runtime

—xample Revisited

. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
. Pop quiz - why Is it called dynamic relocation?
1. Relocation happens at runtime
2. Can change the address even after creation

—xample Revisited

. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
. Pop quiz - why Is it called dynamic relocation?
1. Relocation happens at runtime
2. Can change the address even after creation
3. Why would you do that”? How would you do that??

—xample Revisited

. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
. Pop quiz - why is it called dynamic relocation”
1. Relocation happens at runtime
2. Can change the address even after creation
3. Why would you do that” How would you do that”

—xample Revisited

. PC points to 128
2. Fetch instruction :
1. Physical Address = Base + Virtual Address = 32K +
128 = 32896
. Execute load:
1. Data resides in Virtual Address 15 KB
2. Fetch data from 32 KB + 15 KB = 47 KB
. Pop quiz - why is it called dynamic relocation”
1. Relocation happens at runtime
2. Can change the address even after creation
3. Why would you do that” How would you do that”

Sounds register

Goals of OS for Memory Virtualisation

1. Transparency
1. Virtual memory is invisible to user program

2. Program thinks it has own private large memory
2. Efficiency

1. Not taking very long
2. Not taking too much space
3. Protection/Isolation
1. Protect processes from each other

29

10

Sounds register

Goals of OS for Memory Virtualisation

1. Transparency
1. Virtual memory is invisible to user program

2. Program thinks it has own private large memory
2. Efficiency

1. Not taking very long
2. Not taking too much space

3. Protection/Isolation
1. Protect processes from each other

29

10

Sounds register

11

Sounds register

1. Checks it memory reference is within bounds

11

Sounds register

2. Pop Quiz: What'’s the bound in our example?

11

Sounds register

1. Ans: 16 KB

11

3.

Sounds register

Incorrect virtual address : Terminate!

11

Sounds register

1. Checks it memory reference is within bounds

2. Pop Quiz: What’s the bound in our example?
1. Ans: 16 KB

3. Incorrect virtual address : Terminate!

11

Sounds register

1. Checks it memory reference is within bounds

2. Pop Quiz: What’s the bound in our example?
1. Ans: 16 KB

3. Incorrect virtual address : Terminate!

11

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual Address Base : 0X1000
OX1OO Bounds: OX300

0X1000

0X1000 + 0X300 S

12

Dynamic (Hardware-based) Relocation
Sase & Bounas

me
CPU Physical Memory

Virtual AddreSS Base : 0X1000 L e
0x200 Bounds: 0X300 0X1000

0X1000 + 0X300 S

13

Dynamic (Hardware-pased) Relocation
Sase & BouNds

me
CPU Physical Memory

Virtual Address Base : 0X1000
0x400 Bounds: 0X300 0X1000

0X1000 + 0X300

14

Dynamic (Hardware-pased) Relocation
Sase & BouNds

me
CPU Physical Memory

Virtual AddreSS Base : 0X1000 [s
0x400 Bounds: 0X300 0X1000

0X1000 + 0X300

NOT allowed!

14

=elocation

Hardware Requirements

Hardware Requirement for Dynamic

Notes

Privileged mode

Base /bounds registers

Ability to translate virtual addresses
and check if within bounds

Privileged instruction(s) to
update base/bounds

Privileged instruction(s) to register
exception handlers

Ability to raise exceptions

15

=elocation

Hardware Requirements

Hardware Requirement for Dynamic

Notes

Privileged mode

Needed to prevent user-mode processes
from executing privileged operations

Base /bounds registers

Ability to translate virtual addresses
and check if within bounds

Privileged instruction(s) to
update base/bounds

Privileged instruction(s) to register
exception handlers

Ability to raise exceptions

15

=elocation

Hardware Requirements

Hardware Requirement for Dynamic

Notes

Privileged mode

Needed to prevent user-mode processes
from executing privileged operations

Base /bounds registers

Need pair of registers per CPU to support

address translation and bounds checks

Ability to translate virtual addresses
and check if within bounds

Privileged instruction(s) to
update base/bounds

Privileged instruction(s) to register
exception handlers

Ability to raise exceptions

15

Hardware Requirement for Dynamic

Relocation
Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes
from executing privileged operations
Base /bounds registers Need pair of registers per CPU to support

address translation and bounds checks

Ability to translate virtual addresses Circuitry to do translations and check
and check if within bounds limits; in this case, quite simple

Privileged instruction(s) to
update base/bounds

Privileged instruction(s) to register
exception handlers

Ability to raise exceptions

15

Hardware Requirement for Dynamic

Relocation
Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes
from executing privileged operations
Base /bounds registers Need pair of registers per CPU to support

address translation and bounds checks

Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base/bounds before letting a user program run

Privileged instruction(s) to register
exception handlers

Ability to raise exceptions

15

Hardware Requirement for Dynamic

Relocation
Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes
from executing privileged operations
Base /bounds registers Need pair of registers per CPU to support

address translation and bounds checks

Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values

update base/bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what

exception handlers code to run if exception occurs

Ability to raise exceptions

15

Hardware Requirement for Dynamic

Relocation
Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes
from executing privileged operations
Base /bounds registers Need pair of registers per CPU to support

address translation and bounds checks

Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base/bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or out-of-bounds memory

15

OS

Responsipilities for

Dynamic

Relocation

16

OS

1.

Responsipilities for

Memory Management :

Dynamic

Relocation

16

OS

Responsipilities for

Dynamic

Relocation

1. Allocate memory for new processes

16

OS

Responsipilities for

Dynamic

Relocation

2. Reclaim memory from terminated process

16

OS

Responsipilities for

Dynamic

3. Manage memory via free list

Relocation

16

OS Responsibilities for

Dynamic

2. Base/Bound management :

Relocation

16

OS

Responsipilities for

Dynamic

Relocation

1. Set base/bound upon context switch

16

OS Responsibilities for

3. Exception handling :

Dynamic

Relocation

16

OS

Responsipilities for

Dynamic

erminate offending process

Relocation

16

Base &

Sounds

ros

17

Base &

1. Simple : Hardware only needs to know base & bounds

Sounds

ros

17

Base &

Sounds

2. Relatively fast :

ros

17

Base &

1. Protection : 1 comparison (bound)

Sounds

ros

17

Base &

2. Translation : 1 addition

Sounds

ros

17

Base &

Bounds : Cons

18

Base &

Bounds : Cons

Base

Base + Bound

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

Heap

(allocated but not in use)

T

Stack

(not in use)

Relocated Process

18

Base &

Bounds : Cons

1. Contiguous block of memory
needed In physical memory

Base

Base + Bound

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

Heap

(allocated but not in use)

T

Stack

(not in use)

Relocated Process

18

Base &

Bounds : Cons

1. Internal fragmentation

Base

Base + Bound

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

Heap

(allocated but not in use)

T

Stack

(not in use)

Relocated Process

18

Base &

Bounds : Cons

2. External fragmentation

Base

Base + Bound

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

Heap

(allocated but not in use)

T

Stack

(not in use)

Relocated Process

18

Segmentation

Code

Heap

v

(allocated but not in use)

T

Stack

19

Segmentation

Base for Code

Base + Bound
for Code

Code

Heap

v

(allocated but not in use)

T

Stack

19

Segmentation

Base for Code

Base + Bound
for Code

Code

Heap

v

(allocated but not in use)

T

Stack

19

Segmentation

Base for Code

Code

Base + Bound
for Code

Heap

v

(allocated but not in use)

T

Stack

19

Segmentation

Code

Heap

v

(allocated but not in use)

T

Stack

20

Segmentation

Base for Heap

Base + Bound
for Heap

Code

Heap

v

(allocated but not in use)

T

Stack

20

Segmentation

Code

Base for Heap

Base + Bound
for Heap

Heap

v

(allocated but not in use)

T

Stack

20

Segmentation

Code

Base for Heap

Base + Bound
for Heap

Heap

v

(allocated but not in use)

T

Stack

20

Segmentation

Code

Heap

v

(allocated but not in use)

T

Stack

21

Segmentation

Base + Bound for
Stack
Base for Stack

Code

Heap

v

(allocated but not in use)

T

Stack

21

Segmentation

Base + Bound for

Code

Heap

Stack
Base for Stack

v

(allocated but not in use)

T

Stack

21

Segmentation

Base + Bound for

Code

Heap

Stack

v

(allocated but not in use)

T

Base for Stack

Stack

21

Segmentation

22

1.

Segmentation

Multiple bases and bounds per process. Each of them
called a segment.

22

Segmentation

1. BEach segment can have own size

22

Segmentation

2. BEach segment can have own permissions:

22

Segmentation

1. Code would be?

22

Segmentation

3. Each segment can have direction of growth!

22

Segmentation : Mini Guide (TL

= version)

23

Segmentation : Mini Guide (TL

1. Each segment has:

= version)

23

Segmentation : Mini Guide (TL

1. Start virtual address (VA)

= version)

23

Segmentation : Mini Guide (TL

2. Base physical address

= version)

23

Segmentation : Mini Guide (TL

3. Bound

= version)

23

Segmentation : Mini Guide (TLDR version)

2. Check: Virtual Address is OK if it inside some segment,
or for some segment:

23

Segmentation : Mini Guide (TLDR version)

1. Segment Start < VA, < Segment Start + Segment Bound.

23

Segmentation : Mini Guide (TLDR version)

3. Translate: For the segment that contains this virtual
address:

23

Segmentation : Mini Guide (TLDR version)

1.

Physical Address = (V.A. - Segment Start) + Segment Base

23

Segmentation

CPU

Virtual Address
0x100

—xample

Kernel

MMU

Physical Memory

0 PR s 0 s
= *
=1 :
= :
= 1
—
= <
=% o
- =
o~
o
o

24

Segmentation Example

CPU

Virtual Addres
0x100

Kernel

MMU

>

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 1
= :
=
=0 =
" S
= =
o~
m
(G

24

Segmentation Example

CPU

Virtual Addres
0x100

Kernel

MU

>

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 1
= :
=
=0 =
" S
= =
o~
m
(G

24

Segmentation Example

K rnfl

CPU MU

Virtual Address/
0x100

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

24

Segmentation Example

|

. VA start: 0x0O000
V|rtual AddreSS/ Base : 0X1000
Ox100

Bounds: 0X0300

Physical Memory

L ELL

g v 14
ﬁ |

o <

© S

= =

[o1]

24

Segmentation

CPU

Virtual Addres
0x100

>

—Xample

me
Physical Memory

VA start; Ox0000

Base : 0X1000

Bounds: 0X0300 INE).GI0[0]0

0X1000 + OX300 (SN

24

Segmentation Example

|

. VA start: 0x0000
V|rtual AddreSS/ Base : 0X1000
Ox100

Bounds: 0X0300 INE).GI0[0]0

0X1000 + 0X300

Check:Segment Start < VA, < Segment Start + Segment Bound.

Physical Memory

24

Segmentation Example

me
Physical Memory

VA start: 0x0000

CPU

Virtual Address
0x100

Check:Segment Start < VA, < Segment Start + Segment Bound.

Check:0X000 <0X0100 <0X300

Base : 0X1000

senpecao e OX1000

0X1000 + 0X300

24

Segmentation Example

me
Physical Memory

VA start: 0x0000

CPU

Virtual Address
0x100

Check:Segment Start < VA, < Segr rent Start + Segment Bound.

Check:0X000 <0X0100 <0X300

Base : 0X1000

senpecao e OX1000

0X1000 + 0X300

24

Segmentation Example

me
CPU Physical Memory

VA start: 0x0000
Virtual Address ot 2
Ox100 Bounds: 0X0300 HEE0); G100

0X1000 + 0X300

Check:Segment Start < VA, < Segr rent Start + Segment Bound.

Check:0X000 <0X0100 <0X300

DPAGB

8GB 2RX8 PC4-2133P-SBB-11
oduct of CHINA

MTA16ATF1G64HZ-2G1B1

Pr

4%

Physical Address = (V.A. - Segment Start) + Segment Base

24

Segmentation Example

me
CPU Physical Memory

- VA start: 0x0000
Virtual Address ot 2
Ox100 Bounds: 0X0300 HEE0); G100

0X1000 + 0X300

Check:Segment Start < V.A. < Segrent Start + Segment Bound.

Check:0X000 <0X0100 <0X300

DPAGB

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
oduct of CHINA

Pr

4%

Physical Address = (V.A. - Segment Start) + Segment Base
Physical Address = (0x0100 - 0x0000) + 0x1000

24

Segmentation Example

me
CPU Physical Memory

- VA start: 0x0000
Virtual Address ot 2
Ox100 Bounds: 0X0300 HEE0); G100

0X1000 + 0X30(Q

Check:Segment Start < V.A. < Segrent Start + Segment Bound.

Check:0X000 <0X0100 <0X300

DPAGB

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
oduct of CHINA

Pr

4%

Physical Address = (V.A. - Segment Start) + Segment Base
Physical Address = (0x0100 - 0x0000) + 0x1000

24

Segmentation

CPU

Virtual Address
0x2400

—xample

Kernel

MMU

Physical Memory

0 PR . 0 5
= :
=1 :
— ;
= :
—
=0 <
= >
- =
o
o
(L)

25

Segmentation Example

Kernel

CPU MMU

Virtual Address/
0x2400

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

25

Segmentation Example

Kernel

CPU MU

Virtual Address/
0x2400

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

25

Segmentation Example

K rnfl

CPU MU

Virtual Address/
0x2400

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

25

Segmentation Example

|

. VA start: 0x2000
Virtual AddreSS/ BZSa;: O>X<3ooo
0x2400

Bounds: 0X0600

Physical Memory

L ELL

g v 14
ﬁ |

o <

© S

= =

[o1]

25

Segmentation Example

Z mf

CPU Physical Memory

Virtual AddreSS/ 4 o aeie
0x2400

Bounds: 0X0600

0X3000

0X3000
+ 0X600

25

Segmentation Example

Z mf

CPU Physical Memory

Virtual AddreSS/ 4 o aeie
0x2400

Bounds: 0X0600

0X3000

Check:Segment Start < VA, < Segment Start + Segment Bound.

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
0x2400

Check:Segment Start < VA, < Segment Start + Segment Bound.

—Xample

Z]

VA start: 0x2000

Base : 0X3000
Bounds: 0X0600

Check:0X2000 <0X2400 <0X2000+0X600

Physical Memory

0X3000

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
0x2400

Check:Segment Start < VA, < Segment Start + Segment Bound.

—Xample

Z]

VA start: 0x2000

Base : 0X3000
Bounds: 0X0600

Check:0X2000 <0X2400 <0X2000+0X600

Physical Memory

0X3000

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
0x2400

Check:Segment Start < V.A. < Segment Start + Segment Bound.

—Xample

[l

VA start: 0x2000

Base : 0X3000
Bounds: 0X0600

Check:0X2000 <0X2400 <0X2000+0X600

Physical Address = (V.A. - Segment Start) + Segment Base

Physical Memory

0X3000

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
0x2400

Check:Segment Start < V.A. < Segment Start + Segment Bound.

—Xample

[l

VA start: 0x2000

Base : 0X3000
Bounds: 0X0600

Check:0X2000 <0X2400 <0X2000+0X600

Physical Address = (V.A. - Segment Start) + Segment Base

Physical Address = (0x2400 - 0x2000) + 0x3000

Physical Memory

0X3000

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
0x2400

Check:Segment Start < V.A. < Segment Start + Segment Bound.

—Xample

[l

VA start: 0x2000

Base : 0X3000
Bounds: 0X0600

Check:0X2000 <0X2400 <0X2000+0X600

Physical Address = (V.A. - Segment Start) + Segment Base

Physical Address = (0x2400 - 0x2000) + 0x3000

Physical Memory

0X3000

0X3000
+ 0X600

25

Segmentation

CPU

Virtual Address
Ox2700

—xample

Kernel

MMU

Physical Memory

0 PR . 0 5
= :
=1 :
— ;
= :
—
=0 <
= >
- =
o
o
(L)

20

Segmentation Example

Kernel

CPU MMU

Virtual Address/
Ox2700

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

20

Segmentation Example

Kernel

CPU MU

Virtual Address/
Ox2700

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

20

Segmentation Example

K rnfl

CPU MU

Virtual Address/
Ox2700

Physical Memory

0 PR . 0 1t
= ‘
=7 :
= 3
= :
=
=0 =
" S
= =
o~
m
(G
<
m g

20

Segmentation Example

o

Virtual Address/
Ox2700

VA start: 0x0000

Base : 0X1000
Bounds: 0X0300

Physical Memory

=
=7 :
== :
=
—
=0 =
— -—
(7] o
- =
o
o
0]
©

20

Segmentation :xamp\e

n VA start; 0x0000 VA start; 0x2000
Base : 0X1000 Base : 0X3000
Bounds: 0X0300 Bounds: 0X0600

Physical Memory

CPU

Virtual Address/
0Ox2700

1||;|II%I\I c €

16
DPAGB2M014

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
CHINA

Product of

A

20

Segmentation :xamp\e

n VA start; 0x0000 VA start; 0x2000
Base : 0X1000 Base : 0X3000
Bounds: 0X0300 Bounds: 0X0600

Physical Memory

CPU

Virtual Address
0Ox2700

I%Iﬂ c E

Check:Segment Start < V.A. < Segment Start + Segment Bound.

1619

DPAGB2M014

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
oduct of CHINA

Pri

a

26

Segmentation :xamp\e

n VA start; 0x0000 VA start; 0x2000
Base : 0X1000 Base : 0X3000
Bounds: 0X0300 Bounds: 0X0600

Physical Memory

CPU

Virtual Address
0Ox2700

I%Iﬂ c €

Check:Segment Start < V.A. < Segment Start + Segment Bound.

1619

DPAGB2M014

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
duct of CHINA

Pro

4%

26

Segmentation Example

n | VA start; 0x0000 VA start; 0x2000
Base : 0X1000 Base : 0X3000
Bounds: 0X0300 Bounds: 0X0600

MU

Physical Memory

CPU

Virtual Address
Ox2700

I%Iﬂ c E

1619

DPAGB2M014

MTA16ATF1G64HZ-2G1B1
8GB 2RX8 PC4-2133P-SBB-11
oduct of CHINA

Pr

a

20

Segment

Virtual
Address
Space

OKB

1KB

2KB

3KB

4KB

(9]

KB

6KB

14KB

15KB

16KB

Reference

Program Code

27

Segment

Virtual
Address
Space

Reference

OKB

1KB

2KB

3KB

4KB

(%))

KB

6KB

14KB

15KB

16KB

Program Code

(free)

Stack

27

Segment

Virtual
Address
Space

Reference

OKB

1KB

2KB

3KB

4KB

(%))

KB

6KB

14KB

15KB

16KB

Program Code

(free)

Stack

00 0000 J 0000 J 0000

27

Segment Reference
00
00
Virtual o
Address s o
Space ore

14KB

15KB

16KB

(free)

Stack

27

Segment

Reference

Virtual
Address
Space

0KB

1KB

2KB

3KB

4KB

()}

KB

6KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack

cof cooo] o0 | ooco
[RTINS I

27

Segment

Reference

Virtual
Address
Space

0KB

1KB

2KB

3KB

4KB

()}

KB

6KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack

cof cooo] o0 | ooco
[RTINS I

27

Segment

Reference

Virtual
Address
Space

0KB

1KB

2KB

3KB

4KB

()}

KB

6KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack

cof cooo] o0 | ooco
[RTINS I

27

Segment Reference

0KB

1KB Program Code
e 0111 § 1111 | 1111
] 3KB
Virtual s 0000 0000 0000
Address s eap

Space |

(free)

14KB t
15KB

Stack
16KB

Segment

Reference

Virtual
Address
Space

0KB

1KB

2KB

3KB

4KB

()}

KB

6KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack

0

00
00

Most significant 2 bits

)

->Which Segment

27

Segment

Reference

Virtual
Address
Space

0KB

1KB

2KB

3KB

4KB

()}

KB

6KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack

0

00
00

p Most significant 2 bits

->Which Segment
Segment = (VA & SEG_MASK) >>SEG_SHIFT

27

Segment Reference

0KB

p Most significant 2 bits
->Which Segment

1KB Program Code

2KB

3KB

4KB O

KB Heap

Virtual
Address
Space @ 1

(%))

(free) Segment = (VA & SEG_MASK) >>SEG_SHIFT
Segment = (VA & 11 0000 0000 0000) >>12

14KB t

15KB

Stack

16KB

27

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

[NI IS I

3KB

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB I

15KB

)

Stack

16KB

Segment Reference

0KB
E 1KB Program Code m
00

3KB

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB I

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

[NI IS I

3KB

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

m 0[0/0]0) 0000 1010
0000 0[0/0]0) 0[0/0]0)

(free)

14KB T

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

[NI IS I

3KB

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

m 0[0/0]0) 0000 1010
& 0000 0[0/0]0) 0[0/0]0)

(free)

14KB T

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

[NI IS I

3KB

m 0[0/0]0) 0000 1010
& 0000 0[0/0]0) 0[0/0]0)

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB T

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

oo oo | oo | voro-
& 0111 1111 1111
- I MCXEEN IREEEN IREEEN

o] oo T o0 o JR

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB t

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

ol o | o0 | o0
& 0111 1111 1111
- [NEXEN IKEEEN K

 EIEIED .

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB t

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00] 0000 J o000 | 1010
& o111 | 1111 | 1111
- 0] ot o J i

ol oo T o [ooco H
DEAEED -

Segment = (VA & 11 0000 0000 0000) >>12

>>12

(22]

(free)

14KB 1

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00] 0000 J o000 | 1010
& o111 | 1111 | 1111
- 0] ot o J i

DEIEDES ©
DEAEE -
A

Segment = (VA & 11 0000 0000 0000) >>12

>>12

(22]

(free)

14KB 1

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

0] oooo | o000 | oo
& o111 | 1111 § 1111
- I MESEEN IREEEN IREEEN

o] oo T o0 o TR

KB 1
Segment = (VA & 11 0000 0000 0000) >>12

>>12

m 0[0[0]0 0[0/0]0) 0000
A

(22]

(free)

Segment = Code

14KB 1

15KB

)

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

[NI IS I

3KB

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB I

15KB

.

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

o -

6KB 1
Segment = (VA & 11 0000 0000 0000) >>12

()}

(free)

14KB I

15KB

y

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

5KB Heap

" 7

Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB T

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

5KB Heap

o oo Fae P JRIRY

Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB T

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

5KB Heap

o oo Fae P JRIRY

Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB T

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

KB Heap
‘D -

()}

»

Segment = (VA & 11 0000 0000 0000) >>12

(free)

14KB t

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

KB Heap
HETEETEEDE - —

Segment = (VA & 11 0000 0000 0000) >>12
>>12

(free)

()}

»

14KB t

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

KB Hea
‘ISR -
Segment = (VA & 11 0000 0000 0000) >>12
CEIERED | -

()}

(22]

14KB 1

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

KB Hea
‘ISR -
Segment = (VA & 11 0000 0000 0000) >>12
12
 OEDEREE -
A

()}

(22]

14KB 1

15KB

}

Stack

16KB

Segment Reference

00 0000 J 0000 J 0000

1KB Program Code

00§ ot J it] 111

3KB

KB Hea
‘ISR -
Segment = (VA & 11 0000 0000 0000) >>12
12
 OEDEREE -
A

(%))

(22]

}

Segment — eap 14KB

15KB
Stack

16KB

