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1. When do you think base and bounds
register will be set up?
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2. What happens when context Is
switched?
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Segmentation

Multiple bases and bounds per process. Each of them
called a segment.
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2. BEach segment can have own permissions:
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or for some segment:
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1. Segment Start < VA, < Segment Start + Segment Bound.
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3. Translate: For the segment that contains this virtual
address:
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Physical Address = (V.A. - Segment Start) + Segment Base
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