Operating Systems RAID continued

Nipun Batra

RAID-1: Mirroring
Keep two copies of all data.

Assumptions

Assume disks are fail-stop.

- they work or they don't
- we know when they don't

Tougher Errors:

- latent sector errors
- silent data corruption

2 disks

Disk 0	Disk 1
0	0
1	1
2	2
3	3

4 disks

4 disks

How many disks can fail?

RAID-1: Analysis

RAID-1: Analysis

- What is capacity?

RAID-1: Analysis

- What is capacity?
- $\mathrm{N} / 2{ }^{*} \mathrm{C}$

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?

RAID-1: Analysis
-What is capacity?

- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - $(N / 2)^{*} S$
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)
- Throughput?
- Sequential write - $(\mathrm{N} / 2)^{*} \mathrm{~S}$
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis
-What is capacity?

- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

Disk 0		Disk 1	Disk 2
Disk 3			
0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

Disk 0			Disk 1
Disk 2	Disk 3		
0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

Disk 0		Disk 1	Disk 2
Disk 3			
0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis
-What is capacity?

- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

- Throughput?
- Sequential write - $(\mathrm{N} / 2)^{*} \mathrm{~S}$
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis
-What is capacity?

- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

- Throughput?
- Sequential write - $(\mathrm{N} / 2)^{*} \mathrm{~S}$
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

RAID-1: Analysis

- What is capacity?
- N/2 * C
- How many disks can fail?
- 1 or N/2 (best case)

- Throughput?
- Sequential write - (N/2)*S
- Sequential read - (N/2)*S
- Random write - (N/2)*R
- Random read - (N*R)
- Latency
- D

Crashes

	Disk0	Disk1
0	A	A
1	B	B
2	C	C
3	D	D

Crashes

write(A) to 2

Crashes

write(A) to 2

Crashes

write(A) to 2

Crashes

	Disk0	Disk1
0	A	A
1	B	B
2	A	A
3	D	D

Crashes

write(T) to 3

Crashes

Crashes

Crashes

H/W Solution

Problem: Consistent-Update Problem

Use non-volatile RAM in RAID controller.

RAID-4 compared to RAID-1 and RAID-0

Strategy

Strategy

- Use parity disk.

Strategy

- Use parity disk.

Strategy

- Use parity disk.
- In algebra, if an equation has N variables, and N -1 are know, you can often solve for the unknown.

Strategy

- Use parity disk.
- In algebra, if an equation has N variables, and N -1 are know, you can often solve for the unknown.

Strategy

- Use parity disk.
- In algebra, if an equation has N variables, and $\mathrm{N}-1$ are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.

Strategy

- Use parity disk.
- In algebra, if an equation has N variables, and $\mathrm{N}-1$ are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.

Strategy

- Use parity disk.
- In algebra, if an equation has N variables, and N -1 are know, you can often solve for the unknown.
- Treat the sectors across disks in a stripe as an equation.
- A failed disk is like an unknown in the equation.

Example

Disk0 Disk1 Disk2 Disk3 Disk4
 Stripe:
 \square

Example

Disk0 Disk1 Disk2 Disk3 Disk4
 Stripe:
 \square

Example

$\begin{array}{lccccc|} & \text { Disk0 } & \text { Disk1 } & \text { Disk2 } & \text { Disk3 } & \text { Disk4 } \\$\cline { 2 - 6 } \& Stripe: \& 5 \& 3 \& 0 \& 1\end{array}$]$

Example

	Disk0	Disk1	Disk2	Disk3	Disk4
	Stripe:	5	3	0	1
					(parity)

Example

Example

	Disk0	Disk1	Disk2	Disk3	Disk4
	Stripe:	5	3	0	1
					(parity)

Example

Example

Example

Example

Parity Functions

Which functions could we use to compute parity?

	Disk0	Disk1	Disk2	Disk3	Disk4
Stripe:	0	1	0	1	$\times O R(0,1,0,1)=0$
					(parity)

RAID-4: Analysis

RAID-4: Analysis

- What is capacity?

RAID-4: Analysis

- What is capacity?

- $(\mathrm{N}-1)^{*} \mathrm{C}$

RAID-4: Analysis

- What is capacity?
- (N-1) * C
- How many disks can fail?

RAID-4: Analysis

- What is capacity?
- ($\mathrm{N}-1$) * C
- How many disks can fail?
- 1

RAID-4: Analysis

- What is capacity?
- ($\mathrm{N}-1$) * C
- How many disks can fail?
- 1
- Throughput?

RAID-4: Analysis

- What is capacity?
- ($\mathrm{N}-1$) * C
- How many disks can fail?
- 1
- Throughput?
- Sequential write - $(\mathrm{N}-1)^{*} \mathrm{~S}$

RAID-4: Analysis

- What is capacity?
- ($\mathrm{N}-1$) * C
- How many disks can fail?
- 1
- Throughput?
- Sequential write - $(\mathrm{N}-1)^{*} \mathrm{~S}$
- Sequential read - $(\mathrm{N}-1)^{*} \mathrm{~S}$

RAID-4: Analysis

- What is capacity?
- ($\mathrm{N}-1$) * C
- How many disks can fail?
- 1
- Throughput?
- Sequential write - $(\mathrm{N}-1)^{*} \mathrm{~S}$
- Sequential read - $(\mathrm{N}-1)^{*} \mathrm{~S}$
- Random read - $(\mathrm{N}-1)^{* R}$

RAID-4: Analysis

- What is capacity?
- $(\mathrm{N}-1){ }^{*} \mathrm{C}$
- How many disks can fail?
- 1
- Throughput?
- Sequential write - $(\mathrm{N}-1)^{*} \mathrm{~S}$
- Sequential read - $(\mathrm{N}-1)^{*} \mathrm{~S}$
- Random read - (N-1)*R
- Random write?

RAID-4: Analysis for Random Write ...

	Disk0	Disk1	Disk2	k3	Disk4
Stripe:	0	1	0	1	$\operatorname{XOR}(0,1,0,1)=0$

RAID-4: Analysis for Random Write ...

- Want to: Write 0 to Disk 1

RAID-4: Analysis for Random Write ...

- Want to: Write 0 to Disk 1
- Read old value of Disk 1

RAID-4: Analysis for Random Write ...

Disk0 Disk1 Disk2 Disk3 Disk4

Stripe:

0	1	0	1	$X O R(0,1,0,1)=0$

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity

RAID-4: Analysis for Random Write ...

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing

RAID-4: Analysis for Random Write ...

	Disk0	Disk1	Disk2	Disk3	Disk4
1 0 1 $X O R(0,1,0,1)=0$ 1 (parity)					

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1

RAID-4: Analysis for Random Write ...

	Disk0	Disk1	Disk2	Disk3	Disk4
1 0 1 $X O R(0,1,0,1)=0$ 1 (parity)					

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes

RAID-4: Analysis for Random Write ...

	Disk0	Disk1	Disk2	Disk3	Disk4
Stripe:	0	1	0	1	$\times O R(0,1,0,1)=0$
					(parity)

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1

RAID-4: Analysis for Random Write ...

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
- Both wait to read and write Parity Disk

RAID-4: Analysis for Random Write ...

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
- Both wait to read and write Parity Disk
- R/2 throughput (independent of \mathbf{N})

RAID-4: Analysis for Random Write ...

	Disk0	Disk1	Disk2	Disk3	Disk4
Stripe:	0	1	0	1	$X O R(0,1,0,1)=0$
					(parity)

- Want to: Write 0 to Disk 1
- Read old value of Disk 1
- Read old value of parity
- If New value of Disk 1 == Old value of Disk 1, Do nothing
- Else, Write new flipped parity and Write new value to Disk 1
- Each random write, needs 2 reads and 2 writes
- Assume we get 2 writes: Disk 0 and Disk 1
- Both wait to read and write Parity Disk
- R/2 throughput (independent of N)
- Latency for random write is 2D (2 parallel reads and 2 parallel writes)

RAID-5 (Improve Random Write Performance)
Disk0 Disk1 Disk2 Disk3 Disk4

-	-	-	-	P

RAID-5: Analysis

Oa) What is capacity? ($\mathrm{N}-\mathbf{1}$) * \mathbf{C}
Ob) How many disks can fail? $\mathbf{1}$
0c) Throughput? ???
Od) Latency? D for read and 2*D for write

RAID-5: Throughput

What is steady-state throughput for

- sequential reads?
- sequential writes?
- random reads?
- random writes?

RAID-5: Throughput

What is steady-state throughput for

- sequential reads? ($\mathrm{N}-1$) * S
- sequential writes? ($\mathrm{N}-1$) * S
- random reads?
- random writes? \quad * R/4

RAID-5: Throughput

What is steady-state throughput for

- sequential reads? ($\mathrm{N}-1$) * S
- sequential writes? ($\mathrm{N}-1$) * S
- random reads?
- random writes?

($\mathrm{N}-1$) * R
 R/2

RAID-4

All RAID

	Reliability	Capacity
RAID-0	0	$\mathrm{C}^{\star} \mathrm{N}$
RAID-1	1	$\mathrm{C}^{\star} \mathrm{N} / 2$
RAID-4	1	$\mathrm{~N}-1$
RAID-5	1	$\mathrm{~N}-1$

All RAID

	Read Latency	Write Latency
RAID-0	D	D
RAID-1	D	D
RAID-4	D	$2 D$
RAID-5	D	2 D

All RAID

	Read Latency	Write Latency
RAID-0	D	D
RAID-1	D	D
RAID-4	D	2 D
RAID-5	D	2 D

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	N *	N * S	N * R	N * R
RAID-1	N/2*S	$\mathrm{N} / 2$ * S	N *R	$\mathrm{N} / 2$ * R
RAID-4	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{N}-1)^{*} \mathrm{R}$	R/2
RAID-5	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{N}-1)^{*} \mathrm{~S}$	N *	$\mathrm{N} / 4$ * R

All RAID

	Seq Reac	Seq Write	Rand Rea	Rand Write
RAID-0	N * S	N *	N * R	N * R
RAID-1	N/2 * S	N/2 * S	N *R	$\mathrm{N} / 2$ *R
RAID-4	$(\mathrm{N}-1)^{*} \mathrm{~S}$	($\mathrm{N}-1)^{*} \mathrm{~S}$	($\mathrm{N}-1$)*R	R/2
RAID-5	($\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{N}-1)^{*} \mathrm{~S}$	N *	$\mathrm{N} / 4$ * R

RAID-5 is strictly better than RAID-4

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	$\mathrm{N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} * \mathrm{R}$
RAID-1	$\mathrm{N} / 2$ * S	$\mathrm{N} / 2 * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 2$ * R
RAID-5	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{~N}-1)^{*} \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 4 * R$

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	$N * S$	$N * S$	$N * R$	$N * R$
RAID-1	$N / 2 * S$	$N / 2 * S$	$N * R$	$N / 2 * R$
RAID-5	$(N-1)^{*} S$	$(N-1)^{*} S$	$N * R$	$N / 4{ }^{*} R$

RAID-0 is always fastest and has best capacity.
(but at cost of reliability)

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	$\mathrm{N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} * \mathrm{R}$
RAID-1	$\mathrm{N} / 2$ * S	$\mathrm{N} / 2 * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 2$ * R
RAID-5	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{~N}-1)^{*} \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 4 * R$

RAID-5 better than RAID-1 for sequential.

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	$\mathrm{N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} * \mathrm{R}$
RAID-1	$\mathrm{N} / 2$ * S	$\mathrm{N} / 2 * \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 2$ * R
RAID-5	$(\mathrm{N}-1)^{*} \mathrm{~S}$	$(\mathrm{~N}-1)^{*} \mathrm{~S}$	$\mathrm{~N} * \mathrm{R}$	$\mathrm{N} / 4 * R$

All RAID

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	$N * S$	$N * S$	$N * R$	N *R
RAID-1	$N / 2 * S$	$N / 2 * S$	$N * R$	$N / 2 * R$
RAID-5	$(N-1)^{*} S$	$(N-1)^{*} S$	$N * R$	$N / 4 * R$

RAID-1 better than RAID-4 for random write.

Summary

Many engineering tradeoffs with RAID. (capacity, reliability, different types of performance).

H/W RAID controllers can handle crashes easier.
Transparent, deployable solutions are popular.

