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Abstract
Residential buildings contribute significantly to the over-

all energy usage across the world. Real deployments, and
collected data thereof, play a critical role in providing in-
sights into home energy consumption and occupant behavior.
Existing datasets from real residential deployments are all
from the developed countries. Developing countries, such as
India, present unique opportunities to evaluate the scalability
of existing research in diverse settings. Building upon more
than a year of experience in sensor network deployments, we
undertake an extensive deployment in a three storey home in
Delhi, spanning 73 days from May-August 2013, measuring
electrical, water and ambient parameters. We used 33 sen-
sors across the home, measuring these parameters, collecting
a total of approx. 400 MB of data daily. We discuss the archi-
tectural implications on the deployment systems that can be
used for monitoring and control in the context of developing
countries. Addressing the unreliability of electrical grid and
internet in such settings, we present Sense Local-store Up-
load architecture for robust data collection. While provid-
ing several unique aspects, our deployment further validates
the common considerations from similar residential deploy-
ments, discussed previously in the literature. We also release
our collected data- Indian data for Ambient Water and Elec-
tricity Sensing (iAWE), for public use.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures

General Terms
Design, Experimentation
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1 Introduction
Buildings account for more than 30% of overall energy

consumption globally. Of this energy consumption, a large
proportion (e.g. 93% in India) is contributed by residential
buildings [10]. Information Technology (IT) such as cyber-
physical systems, wireless sensor networks, embedded con-
trol, computational modeling, machine learning, and sim-
ulation tools can play a key role in reducing the net energy
resources consumed in a building while maintaining the pro-
ductivity of its occupants. These IT methods include guiding
the occupants towards resource conserving behaviors, alert-
ing for timely repair of energy-wasting degradations in build-
ing facilities, intelligent control of the building systems, and
opportunistically harvesting energy from the environment.

Of particular importance are the systemic building de-
ployments that can provide detailed insights about occupant
behavior (specifically, Activities of Daily Living (ADLs))
and energy consumption. These deployments also provide
data sets that can be leveraged for developing and testing
suitable control strategies. These control strategies are
otherwise complex to undertake in a real occupied building.
In the recent past, several datasets, such as REDD [14],
BLUED [3], AMPds [15], Smart* [5], monitoring house-
hold electricity and ambient parameters, have been released
publicly. Several building monitoring and control research
has since used these datasets to prove the validity of their
work for real life settings [18, 6].

However, all of the previous deployments have been done
in the context of developed countries. Developing countries,
such as India, have higher electricity deficit, are adding
new building space at a higher rate and constitute different
infrastructure and energy consumption patterns. A deeper
understanding of these different settings in developing
countries can help in the development of systems that
can scale across diverse settings in a robust manner. We
have been involved in sensor network deployments in the
Indian context for more than a year [7], whereby, we have
instrumented 25 homes with smart meters, a smart campus
with sensors for ambient monitoring in a research wing and
52 smart meters in the institute dorms. In this paper, we
discuss an extensive ongoing deployment in a three storey
home in Delhi, India, spanning 73 days from May-August
2013. Monitored parameters include electricity and water
consumption at the meter level, plug level load monitoring
for major appliances, and ambient parameters across every



room. We used 33 sensors to measure these parameters,
collecting approx. 400 MB data everyday.

To the best of our knowledge, this is the first such exten-
sive deployment outside any developed country. We discuss,
in detail, the unique aspects of our deployment that are
also characteristic of buildings in the developing countries.
Correspondingly, we provide insights into these aspects,
of building systems, critical for robust data collection and
control. We further discuss aspects of our deployment that
were similar to those highlighted in the previous work on
residential deployments. Our deployment was maintained
as an open source project, clearly illustrating the issues
faced and how these were addressed. Unlike many of the
past deployments, detailed metadata logs, such as appliance
make and mode of operation, are also provided. We believe
that the unique aspects of the building energy infrastructure,
as discussed in this work, will enrich the existing research
in building energy domain, which has only leveraged
deployments and data collection in the context of developed
countries until now. Previous work [14] has established that
dataset availability has spurred application areas in machine
learning. With an aim of advancing research in building
energy domain, we release our dataset iAWE.
2 Related Work

Building deployments have been studied in the past
with the goal of improving the building energy efficiency.
Office and campus deployments presented in the previous
work [1, 7] have shown the scope for significantly reducing
HVAC and plug load energy consumption in respective
settings. Several other deployments target residential
sensing for modeling and inference, specifically pertaining
to Non Intrusive Load Monitoring (NILM). Kolter et al. [14]
performed deployments across 6 homes in Boston (US) in
2011, with collected data spanning up to 19 days in some
homes. They monitored household electricity at the meter,
circuit and appliance level using Commercial Off-The-Shelf
(COTS) devices. Their dataset (REDD) has been frequently
used to validate NILM research and to date has been cited 57
times, clearly suggesting the impact of such deployments.
Anderson et al. [3] performed a week long residential
deployment, specifically focusing on collecting fully labeled
high frequency electrical data and released BLUED dataset.
Our data, in comparison, is for a much longer duration
(spanning 73 days at the time of writing), uses a mix of
COTS and customized hardware (due to non-availability of
COTS, for everything we wanted to monitor, in the Indian
context), and provides a unique combination of electricity,
water consumption and ambient parameters.

Barker et al. [5] performed deployments across three
homes and have collected information across varying
modalities including, but limited to, electricity consumption,
occupancy, weather and renewable electricity generation.
They illustrated the wide applicability of the data from
their residential deployment, including peak demand flat-
tening [6] and cost optimization using variable electricity
pricing [17]. They further highlighted the value of additional
information obtained by correlating across multiple sensing
modalities. Motivated by this work, we decided to monitor
the ambient parameters, in addition to monitoring electrical

Figure 1: Schematic showing overall home deployment

and water consumption at different granularity.
Hnat et al. [13] provide a detailed guide into residential

deployments and provided lessons learned from residential
deployments across multiple homes for several years. They
proposed various applications of such detailed sensing in-
cluding identifying ADLs. While providing unique aspects
of our deployment, we further establish the commonalities
in our deployment with the learning discussed in their
work. To the best of our knowledge, all the deployments
discussed previously in the literature pertain to the devel-
oped countries. While residential deployments anywhere
across the world are challenging, our deployments highlight
some unique challenges specific to the developing countries.
Some of these challenges in our setting include, but are not
limited to, unreliable grid, unreliable internet and difficulty
in procuring quality COTS.
3 Deployment Overview

Our deployment constitutes 33 sensors measuring elec-
tricity, water and ambient parameters at different granularity,
in a home in Delhi, India during May-August 2013. Primary
objective for this deployment was to bring forth the differ-
ences in the Indian context, as compared to the context of
developed countries along the dimensions of - 1. Grid and
network reliability; 2. Energy and water consumption pat-
terns; and 3. The ecosystem of available sensing options that
restrict the possible deployments. Figure 1 shows the de-
ployment of these sensors in a 3 storey home, together with
the required computing and communication infrastructure.
It must be noted that the intended purpose behind this de-
ployment is not to develop a low cost, scalable Home Area
Network (HAN), but, to do an extensive deployment for ob-
taining insights into energy consumption, which may be used
for developing suitable HANs.
3.1 Sensing Infrastructure

For sensing, we took a “leave no stone unturned” ap-
proach, similar to SMART* [5], where we chose to mon-
itor as many physical (ambient conditions, electricity usage
and water usage) and non-physical (such as network strength
and network connectivity) parameters as possible. We took
care to deploy these sensors in a way that residents can
continue their daily routines without added inconvenience.
Constrained by the limited options available in the Indian
context, our sensors constitute COTS (procured from both
within and outside India) and custom built hardware.
Electricity monitoring: Motivated by prior electricity con-
sumption deployments, we also chose to monitor electric-
ity consumption across different granularity - electricity me-



(a) EM6400 Smart Meter (b) CT based system for monitoring MCBs (c) Appliance level monitoring using jPlug (d) Current Cost CT based monitoring

(e) Water Meter (f) RPi collecting pulse outputs from water
meter over GPIO

(g) Android phone and ZWave based mul-
tisensor (measuring ambient parameters)

(h) Plug computer collecting ZWave data
and sending over network using Ethernet

Figure 2: Sensing, computation and communication equipment used in our home deployment

ter monitoring the consumption at the home aggregate level,
current transformers (CTs) monitoring current for Miniature
Circuit Breakers (MCBs) (each connected to a combination
of appliances) and plug level monitors for monitoring plug
load based appliances (see Figure 3a for illustration).

1. Meter level: Modbus-serial enabled Schneider Electric
EM64001 meter was used to instrument the main power
supply (see Figure 2a). We collected data including
voltage, current, frequency, phase and power at 1 Hz.

2. Circuit level: Split-core CTs, clamped to individual
MCBs, are used for monitoring circuit level current.
Since no commercial solution was easily available in
India for panel level monitoring, we used a custom built
solution involving low cost microcontroller and Single
Board Computer (SBC) platform. Figure 2b illustrates
CTs monitoring 3 MCBs on the first floor MCB box in
our home. A total of 8 CTs were used to monitor different
MCB circuits in the home.

3. Appliance level: Since no good commercial options
were available for plug level monitors, we worked with
our collaborators and used their in-house developed
jPlug2 for monitoring individual appliance level power
consumption. Ten jPlugs were used to monitor different
plug-load based appliances across the home. jPlug
measured multiple parameters including voltage, current,
phase and frequency, that were uploaded to server using
HTTP POST. Additionally, Current Cost (CC) based CT
is used to measure the power consumption for electric
motor (used to pump water), which is not a plug-load, but
has a significant power consumption (approx. 700 Watts).
CC exposes apparent power data over the USB port. jPlug
and CC are shown in Figure 2c and Figure 2d respectively.

Water monitoring: To work around the short (only for a
few hours a day) water supply in India, overhead water tanks
(typically of 1000 liters capacity) are used to store water.
Due to low water pressure, electric motors are used to pump
the water for storage when the supply is available. Figure 3b
illustrates the water flow distribution in the monitored home,
together with the placement of water meters. One water me-
ter is placed at the inlet (coming from the utility) and another
one at the outlet from the water tank (flowing downwards).

Due to prohibitive cost for digital water meters in India,

1www.goo.gl/01edPS
2A variant of nPlug [11]

(a) Different granularity of measuring
electricity consumption in home: meter,
circuit and appliance

(b) Different granularity of measuring
water consumption in home: inlet sup-
ply from utility, outlet supply from tank

Figure 3: Electricity and water flow inside a home and differ-
ent granularity at which these parameters can be monitored.

we chose to use Zenner Aquameter’s multijet3. The multi-
jet uses pulse output generated through a 4-20 mA current
loop. Water meter connected to the utility, over a 0.5 inch
diameter pipe, generates a pulse for every 1 liter of water
consumption. Water meter connected to the outlet of stor-
age tank, with 1.25 inch diameter, generates a pulse every
10 liters of water consumption. Figure 2e shows the water
meter deployed inline at the overhead tank.
Ambient monitoring: ZWave based Express Controls
HSM1004 multisensors were used for monitoring motion,
light and temperature across 5 rooms in the home. To the
best of our knowledge, at the time of deployment, no com-
mercial ZWave based sensor working on Indian frequency
(865.2 MHz) was available. We correspondingly imported
EU frequency (868.4 MHz) devices and used them for ambi-
ent monitoring. For these HSM100, motion is reported in an
event-driven manner (i.e. whenever there is change in mo-
tion status, a reading is reported) and temperature and light
are polled at 1 Hz. An Android phone, running FunF journal
application5, was placed at a fixed location in each room to
log ambient parameters such as light and sound level every
30 seconds for 5 seconds.
Miscellaneous: Android phones, in addition to measuring
ambient conditions, were also used to scan and log Blue-
tooth, WiFi and GSM networks. All the home occupants
were requested to keep the Bluetooth, for their personal
phone, on during the duration of the experiment. The net-
work scanning was done every 1 minute and is stored locally

3www.aquametwatermeters.com/multijet.html
4http://goo.gl/Bszg0u
5http://www.funf.org/journal.html



Table 1: Details of sensing infrastructure used in our deployment
Sensor name Procurement Sampling frequency Granularity Quantity Communication Observed parameters
EM6400 COTS (India) 1 Hz Home 1 RS 485 Serial Voltage, Current, Frequency, Phase, Power

(Active, Reactive and Apparent), Energy
Aquamet mul-
tijet

COTS (India) 5 Hz Main supply
and tank

2 4-20 mA output
to GPIO

10 liter pulse for tank output and 1 liter pulse
for main supply

Express Con-
trols HSM100

COTS (Imported) Light, temperature: 1 Hz;
Motion: event based

Room 6 ZWave Light, temperature and motion

Android
phones

COTS (India) Audio, light: 5 seconds every
30 seconds; Network scan-
ning: once every 60 seconds

Room 5 Manual transfer Audio features, light, nearby Bluetooth, cell-
tower, WiFi

CT Monitor Prototype 20 Hz MCB 8 Serial RMS Current
jPlug Prototype 1 Hz Appliance 10 WiFi Voltage, Current, Frequency, Power (Active

and Apparent), Energy, Phase
Current Cost COTS (Imported) Once every 6 seconds Appliance 1 Serial Apparent power

on the SD card. External weather conditions, such as temper-
ature, humidity and wind speed, were also logged every 10
minutes using publicly available weather monitoring APIs6.

Complete sensing infrastructure, used in our deployment,
is summarized in Table 1.
3.2 Communication and Computation

Different computing platforms - microcontrollers, SBCs
and desktops are used for data collection. We used 5 RPis7

and 1 Ionics Stratus plug8 computer as SBCs and a 2 GHz
Desktop PC running Linux, as the main local server.

One RPi, connected to EM6400 using RS485-USB
converter, collected meter data using a custom program
based on pyModbus9 and communicated it to the desktop
server. USB output (XML formatted) from CC is collected
on another RPi and is communicated to the desktop server.

Separate RPis were used for prototype circuit level moni-
toring and for collecting data from water meter. We initially
wrote an interrupt driven program to detect GPIO events cor-
responding to pulse output from water meters. We observed
that noise introduced in the circuit due to long cable lengths
led to a lot of false events. Correspondingly, we modified
our program and polled at 5 Hz to obtain GPIO status.

A web daemon, running on the server, listened to the
HTTP post request from jPlugs and dumped the data in
MySQL. Ionics Plug Computer was used to collect data from
all the ZWave based sensors. We wrote custom wrappers
around OpenZWave10 to collect temperature, light and mo-
tion data. While the plug computer had an internal ZWave
(the reason for which it was selected), its range was limited
and did not cover all the ZWave sensors. Correspondingly,
a ZWave controller was connected over USB with Ionics,
that provided reachability to all the ZWave devices. Fig-
ure 2h shows the plug computer collecting ambient sensor
data from ZWave controller. A manual dump of collected
data on each Android phone was performed every 15 days.

In the course of our deployment we observed several is-
sues pertaining to SBCs. As an example, the OpenZWave
based program, used to collect data, created log files for its
own diagnostics. These log files eventually consumed the
512 MB flash drive space on the plug computer. This was
fixed by deleting the older logs. Such problems encouraged
us to develop soft-sensor [19] streams, whereby we periodi-

6Forecast, World Weather, Open Weather Map
7www.raspberrypi.org
8www.ionics-ems.com/plugtop/stratus.html
9www.github.com/bashwork/pymodbus

10www.code.google.com/p/open-zwave

(a) Power outage vs Time (b) Power outage duration
Figure 4: Power outages observed during deployment

cally collected hard disk space, ping success, CPU utilization
and available RAM, for all the computing devices. These
soft-sensor streams can be further used for offline analysis
as well as for real time alerting and fault diagnosis.

Similar to prior literature, reporting WiFi discontinuity in
the homes in the USA [13], we also observed that one WiFi
router did not provide complete coverage for our deploy-
ment. We thus used 3 Netgear JNR101011 routers, where
the router on the first floor acted as the host and the routers
on the ground and the second floor were bridged to it.

It must be noted that theoretically our deployment could
have been done with fewer RPis. However, in order to ensure
that sensing systems are independent of each other and for
home aesthetics, we chose to use additional RPis.
4 How is this deployment different?

We now discuss some of the key unique aspects brought
forward from our deployment.
Unreliable electrical grid: Load shedding or rolling black-
out is a commonplace in the developing countries. Specifi-
cally in India, power outages are common in summers when
the load is high due to excessive usage of air conditioners.
Excessive load and poor infrastructure also leads to signif-
icant fluctuations in the supply voltage. Various statistics,
collected from our deployment, further establish these as-
pects. We used multiple sources, e.g. Unix last command
(providing a history of boot times) on the desktop server and
common missing data duration from multiple sensors, to find
power outages reliably.

Figure 4a shows power outages in aggregated number of
hours per day during May-July 2013. One of the days expe-
rienced power outage for approx. 12 hours. Figure 4b shows
the distribution for duration of all power outages. A total of
107 power outages were reported in the 61 day period re-
ported here, with average power outage of approx. 1 hour.

Figure 5a and 5e show voltage and frequency fluctua-

11www.support.netgear.com/product/JNR1010



(a) Voltage fluctuations
in a week (ours)

(b) Voltage fluctuations
in a week (Smart*)

(c) Voltage fluctuations on one of the
days (ours)

(d) Voltage fluctuations on one of the
days (Smart*)

(e) Frequency fluctua-
tions in a week (ours)

(f) Frequency fluctua-
tions in a week (Smart*)

Figure 5: Comparison of our data with Smart* deployment done in the USA

tions for a week in June from our deployment. Comparing
these observations with the voltage and frequency fluctua-
tions for a week from Smart* dataset, shown in Figure 5b
and 5f respectively, we observe that our deployment shows
a lot more variations in both of these parameters. Figure 5c
and 5d show voltage fluctuations on one of the days from
our deployment and the Smart* dataset respectively. In our
deployment, we observed that the voltage was usually well
below the rated voltage around 10 AM in the morning and
around midnight. Significant amount of NILM literature
uses current data for disaggregation, inherently assuming al-
most fixed voltage from the grid.

Learning: Observed voltage fluctuations motivate two
important aspects - 1. Load measurement devices should
measure both current and voltage and not only current as
is done in many of the CT based devices; and 2. When per-
forming disaggregation, normalization to account for volt-
age fluctuations (as was proposed in the original NILM
work [12]) is important.
Due to unreliable nature of the grid, we wanted to ensure
that all our systems were capable of automatically restart-
ing after a power outage and the complete system achieves
the same state as it was in before the outage. Correspond-
ingly, data collection and upload scripts were executed as
part of system startup process. This feature further provided
us with another advantage - when the system was observed
to be down, we just asked the home occupant to power cy-
cle the system. This ensured that there was minimal data
loss till the time researchers could visit the site and diagnose
the fault. With several devices, each with its diverse sensing,
computation and communication requirements, ensuring that
the system recovers to the same state, as before the outage,
was observed to be non-trivial.

Learning: A robust building monitoring and control sys-
tem should be tested for appropriate system recovery after
power failure.
Unreliable network connectivity: While India has one of
the fastest growing internet user base, only 11% of the total
population is connected to internet (the corresponding fig-
ure in the USA is 78%) [16]. We observed internet to be
either unavailable or having slow intermittent connectivity
throughout our deployment. We collected network statis-
tics by performing 15 internet ping requests every 15 sec-
onds and computed the corresponding packet drop. Figure 6a
shows that packet drop of up to 22% was observed on cer-
tain days. The average packet drop per day was approx. 6%.
Figure 6b shows a CDF plot of % packet drop. It can be seen
that approx. one-fifths of total days reported greater than
10% packet loss.

Learning: For a building monitoring and control system
to scale up for the context of developing countries, with un-

reliable internet connectivity, an architecture that does not
completely rely on good internet connectivity is important.

We correspondingly propose Sense Local-store Up-
load architecture, as discussed in Section 5, to address for
unreliable internet connectivity.
Importance of meta data collection: We collected meta-
data associated with electrical appliances, such as appliance
name, age, mode of usage (eg. air conditioner set tempera-
ture), throughout our deployment. We believe this detailed
metadata can enhance NILM and can provide useful insights
for conserving electricity. An anecdotal evidence illustrates
the utility of meta data collection. The home refrigerator was
repaired on 2nd July. Figure 7a and Figure 7b show the active
power consumption before and after the repair. We observed
that after repair, the refrigerator was set to the lowest temper-
ature setting by the service professional, while before repair
it was set to the highest temperature setting. After the repair,
the refrigerator was found to be consuming 1KWh more per
day (which is 140% above the normal). The residents config-
ured their refrigerator again to the lowest temperature setting
after we informed them about the increased energy usage, re-
sulting in normal power consumption.
Load specifics: Appliance usage varies significantly in India
compared to the USA and the Europe.

Decentralized control: Temperature control is often de-
centralized in the Indian settings i.e. a separate air condi-
tioner is used for every room and a separate geyser (a water
heating device) is used for each bathroom. From our deploy-
ments, we observed that these air conditioners and geysers
account for up to 70% and 50% of the overall home elec-
tricity in summers and winters respectively. Thus, small im-
provements in efficiency of these two appliance can signifi-
cantly lower the home electricity consumption. From NILM
perspective, these loads are simpler to disaggregate due to
their high power consumption and repeated patterns (shown
by the compressor in the air conditioner).

Learning: Even a simple NILM approach can potentially
provide useful insights towards energy reduction in the In-
dian context.

In our recent NILM work- INDiC [8], we illustrate how
simple approaches such as Combinatorial optimization can
give good NILM results when electricity consumption at dif-
ferent granularities is measured.

Energy embedded water: Additional energy, in the Indian
context, is embedded into the water at the home level due
to its low pressure and poor quality. Water pumping and fil-
tering are the two activities whose scope spans across both
water and electricity dimensions. Due to limited supply and
line pressure, a water motor is used to pump the water up to
the water tank on the roof. We observed that to fill 1 liter of
water into the tank, it took 8 seconds without the motor (dur-



(a) % internet packet drop vs time (b) % internet packet drop CDF

Figure 6: Unreliable internet

(a) Before repair (b) After repair

Figure 7: Refrigerator power consumption
ing the times of maximum pressure) and 4 seconds when the
motor was used. With power consumption of 700 W for the
electric motor, every one hour usage will result in additional
energy being embedded into the water due to its intermit-
tent supply. Due to poor quality of supplied water (and often
usage of ground water for drinking purposes), Reverse Os-
mosis based water filters are a commonplace in big cities in
India. We observed that water filter takes approx. 1 minute
to filter 1 liter of water and consumes 40 W in the process.

Learning: Observing water consumption, together with
the electricity consumption, can provide additional useful in-
sights in usage and consumption patterns.

Appliance switching from mains: Another interesting dis-
tinction in the Indian context is that each plug point has an as-
sociated switch and people are often conscious about turning
the appliance off from the switch rather than keeping them
in the standby (as is the usual practice in the USA). We ob-
served that the jPlugs attached to the kitchen appliances such
as microwave, when used for less than 1 minute, did not re-
port data. This was due to the fact that jPlug setup takes
roughly a minute to establish WiFi connectivity before start-
ing the data collection. For small usage, before jPlug could
start data collection, the appliance was turned off.

We also imported ZWave based plug monitors and con-
trollers (with EU frequency) for plug level monitoring. After
their initial deployment, we realized that the default state of
the plug monitors was chosen as off (when powered manu-
ally from the switch), possibly to avoid the peak switching
current. This implied that even after switching them on from
the mains, unless they are switched on from the software (or
with a separate ZWave based switch), they will not turn on
the appliance. Since many of the loads in the Indian context
are not always on and are controlled via mains, such plug
sockets did not result in seamless usage.

Learning: Plug level monitoring should account for the
short appliance usage and power off from the main switch
to ensure robust and reliable data collection, together with
seamless usage.

5 Sense Local-store Upload Architecture
Middleware systems such as sMAP [9], BuildingDe-

pot [2] and SensorAct [4] have been proposed in the past
for sensor data collection from deployments pertaining to

Figure 8: Sense Local-store Upload architecture

buildings. However, we found that they do not sufficiently
address the requirements of our deployment context e.g. in-
termitted network connectivity and repeated power failures.
Motivated by our experience as well as previous work from
other researchers [13], where importance of simplifying the
architecture are proposed, we propose Sense Local-store Up-
load (SLsU) model. SLsU involves two main ideas - associ-
ation of local storage (using SBCs) distributed across each
sensing point and periodic data upload (from SBC to server,
and from server to cloud). As discussed in Section 3.2, we
used 6 SBCs (and local storage on the Android phones) to
connect to multiple sensors spread through our deployment.
Data collected from the sensors was locally stored in the
form of comma separated value files (CSV), in SBCs and
periodically uploaded to the main desktop server. In the
case when upload failed, it was retried after a fixed time du-
ration. Each SBC was provisioned with sufficient flash based
local storage to accommodate sensor data for a few days, to
account for persistent upload failure.

Web applications running on the server allowed residents
to locally visualize their data from multiple sensing streams.
Data from the server was periodically replicated to the cloud,
allowing researchers to remotely visualize the data and main-
tain the deployment. Figure 8 illustrates the SLsU architec-
ture. The salient features of SLsU architecture are:
Decoupled sensing and data upload: ensuring that an error
in data upload does not impact the sensing and vice versa,
thus avoiding data loss due to network (even the local in-
home WiFi) failure.
Reduced dependence on always-on connectivity: Internet
is required only when outside researchers wish to view data
in near-realtime. Internet failure does not have any impact
on the deployment data collection. The periodic nature of
our uploads ensured that data would be uploaded when in-
ternet connectivity is re-established. Local storage, on SBC,
further ensures reliable data collection, even in the cases of
server failure.
Reduced load on server: Periodic upload of data (in larger
volumes) results in reduced computation and bandwidth re-
quirements for the SBCs and the server.

We provide anecdotal evidence to illustrate utility of
SLsU in preventing data loss. One of the researchers in-
volved, accidentally killed the server script responsible for
collecting water consumption data. However, when the prob-
lem was rectified a week later, all the data for the previous
week, which had been locally stored on the RPi, was col-
lected within an hour on the server.

6 Hitchhiker’s guide revisited
We now present some of the prominent similarities, al-

beit with some additional unique perspectives, with prior de-
ployment experiences, most specifically - “The Hitchhiker’s



Guide to Successful Residential Sensing Deployments” [13].
Homes are hazardous environments: We observed that
one of our multisensors repeatedly failed after every power
outage. We, eventually, figured that this behavior was due to
the fact that this multisensor was put on the battery backup
plug (commonly available in many homes to guard against
intermittent power supply). During a power outage, this mul-
tisensor went to sleep state, in absence of communication
with the ZWave controller (which went down during out-
age). Correspondingly, when power resumed, the ZWave
controller assumed the node to be dead. We resolved this by
putting the multisensor on the main plug as well. Although
we used zip-ties extensively throughout the deployment to
prevent hanging wires, we observed data loss in one of the
ZWave multisensor and an Android phone, which went out
of power due to wire snag (shown in Figure 10b). Even after
a month of rigorous testing in the lab before we started the
deployment, we raised 60 new service complaints, when we
moved the deployment to the home.
Aesthetics matter: As stated in the previous work, sensor
LEDs can be bothersome to the occupants, particularly in
the night. Our deployment introduced 63 LEDs in the home.
Figure 10a shows our sensor LEDs blinking in the night.
Choosing appropriate sensor location sufficed for the current
deployment. However, for the future, we intend to case the
sensors appropriately to ensure that home occupants are not
disturbed. The residents also complained of buzz like sound
coming from our desktop server. This noise was due to the
dust clogging in the desktop. Dust is a uniquely common
aspect in the Indian setting.

Learning: Monitoring and control systems, aiming for
long life deployments should include routine maintenance,
to guard against dust and other environmental problems.
Homes are not designed for sensing: We observed much
more noise in the data collected from our ground floor MCBs
than from the MCBs on the first floor. This was attributed to
the fact that the MCBs on the ground floor were close (as
shown in Figure 10c) to each other causing interference in
our CT monitoring circuit. A workaround could have been
to get additional cabling done, but the residents were not in-
clined for such changes.
Redundancy-Accounting for sensor failure: During our
deployment 3 jPlugs and 1 multisensor stopped functioning.
We had accounted for such failure keeping reserve sensors.
Homes have poor connectivity: During the preliminary
phase of our deployment, we first tried to connect our sen-
sors to the existing networking infrastructure in the home.
Already existing WiFi router was on the first floor and we
observed poor signal strength on the ground and the second
floor. We used Ekahau Heat Mapper12 to map WiFi signal
strength. Figure 9a and 9c show the WiFi heatmap produced
with the home router placed on the first floor. We observed
that large regions inside the home show poor signal strength.
We bridged additional routers on the ground and the second
floor with the existing first floor router. Figure 9b and 9d
show the corresponding WiFi heatmaps produced after the
introduction of bridged routers. Additional routers signifi-

12www.ekahau.com/products/heatmapper/overview.html

(a) Ground floor
(without additional
router)

(b) Ground floor
(with additional
router)

(c) Second floor
(without additional
router)

(d) Second floor
(with additional
router)

(e)
Scale

Figure 9: WiFi Heatmap, with and without the additional
routers, for the ground and the second floor (Best viewed in
color)

(a) Glowing LEDs in night (b) Wire snag leading to
data loss

(c) Closely placed MCBs
causing interference

Figure 10: Illustration of common problems

cantly improved WiFi coverage across the home, shown by
increased green regions (signifying better signal strength as
per the scale shown in Figure 9e).
7 iAWE dataset and code release

We are releasing our dataset iAWE for open use. iAWE
consists of sensor data (ambient, water and electricity) worth
73 days. It also contains fully labeled data for 1 day for 63
electrical appliances, 18 water fixtures and ambient condi-
tions across 6 rooms. We further provide a detailed metadata
log for all the electrical appliances, including, approx. date
of purchase, mapping to MCB, star-rating and rated power.
All the appliance ON-OFF events can be easily captured us-
ing the plug level data collected from jPlug and Current Cost
CT. To facilitate engaging research, we provide a web por-
tal13 for researchers to visualize different data streams.

Figure 11 illustrates the advantage of detailed labeling to-
gether with use of multi-modal sensing. One of the occu-
pants returned back home around 7:15 PM, an event cap-
tured synchronously by ground floor motion sensor, electric-
ity meter and ground floor light sensor. The occupant (who
was alone in the home) then heated up some food in the oven.
While the oven jPlug failed to record it (due to the small us-
age time), this event is captured in the electricity meter data
(spikes reaching up to 1800 watts). Thereafter, the occu-
pant went to the first floor, turned on lights and switched on
the laptop (illustrated through measurements from motion,
light sensor on the first floor and laptop jPlug. After approx.
an hour, the occupant switched on the air conditioner which
is captured by the jPlug connected to the air conditioner as
well as a spike in the meter measurements. Correspondingly,
the temperature sensor in the room started observing reduced
temperature values.

We also publicly release our codebase which includes
SLsU implementation, scripts for collecting data from differ-
ent sensors, database schemas, soft-sensors, startup scripts
and the fixes we developed for common problems on RPi.
Our codebase and dataset is available on Github14.
8 Conclusions and Future Work

In this paper, we present our experiences with an ex-
tensive residential deployment monitoring electrical, water

13http://www.energy.iiitd.edu.in/iawe
14http://github.com/nipunreddevil/Home_Deployment



Figure 11: iAWE: Labeled multi-modal dataset

and ambient parameters in Delhi, India. To the best of our
knowledge, this is the first extensive residential deployment
in a developing country. We present key aspects of our
deployment and discuss the corresponding impact on the
design of building monitoring and control systems that aim
to scale across diverse contexts offered in the developing
and the developed countries. Some of the unique aspects,
impacting the systems development in building energy
domain, include - unreliable electrical grid, unreliable
network connectivity, decentralized electrical loads and
energy-water nexus within a home. We further discussed
the similarities in our learning with prior work (done in the
USA), demystifying the home environment for energy and
water related deployments in the Indian context.

Frequent power outages and unreliable internet motivated
us to develop the proposed sensing architecture: SLsU,
which accounts for these pitfalls by introducing local stor-
age and periodic upload. Such an architecture can be of par-
ticular importance for scaling the building monitoring and
control systems for applicability across diverse contexts. We
are in the process of installing our sensors across multiple
other homes in Delhi. Detailed, annotated dataset from the
deployment (iAWE) is released for public use.
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