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ABSTRACT
Over the past few years, dozens of new techniques have been
proposed for more accurate energy disaggregation, but the
jury is still out on whether these techniques can actually
save energy and, if so, whether higher accuracy translates
into higher energy savings. In this paper, we explore both
of these questions. First, we develop new techniques that
use disaggregated power data to provide actionable feed-
back to residential users. We evaluate these techniques us-
ing power traces from 240 homes and find that they can
detect homes that need feedback with as much as 84% ac-
curacy. Second, we evaluate whether existing energy dis-
aggregation techniques provide power traces with sufficient
fidelity to support the feedback techniques that we created
and whether more accurate disaggregation results translate
into more energy savings for the users. Results show that
feedback accuracy is very low even while disaggregation ac-
curacy is high. These results indicate a need to revisit the
metrics by which disaggregation is evaluated.

Categories and Subject Descriptors
D.2.8 [Load disaggregation]: Metrics
General Terms
Energy feedback
Keywords
NILM
1. INTRODUCTION

Over the past few years, dozens of new techniques have
been proposed for more accurate energy disaggregation, but
the jury is still out on whether these techniques can actually
save energy and, if so, whether higher accuracy translates
into higher energy savings. In this paper, we explore both
of these questions.

Energy disaggregation is the process of estimating the power
draw of individual electrical loads based on metering of their
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aggregate power. Research in this area is broadly motivated
by the philosophy of Lord Kelvin: “If you can’t measure it,
you can’t improve it,” but is the opposite also true? Dis-
aggregation techniques can be used to help users identify
the major energy consumers in their home or business, and
some users will pour over this data to achieve significant en-
ergy savings [3]. However, several studies have shown that
just providing energy data does not necessarily translate
to long-term energy savings. After the novelty wears off,
users experience a rebound effect as unsustainable energy-
saving actions unwind themselves and as users tire of sifting
through too much data [1]. Other studies have shown more
sustainable effects by providing more targeted feedback or
recommendations for simple actions [10]. Can disaggrega-
tion techniques be used to generate the types of targeted,
actionable feedback that would produce sustainable energy
savings?

In this paper, we present the exploration of two research
questions that are highly relevant to the research commu-
nity interested in energy disaggregation. First, we explore
whether disaggregated power data can be used to provide ac-
tionable feedback to residential users, and whether that feed-
back is likely to save energy. We focus on feedback about re-
frigerators and HVAC, because they contribute significantly
to overall home energy consumption and are available in
most homes. We develop a model that breaks the power
trace of a refrigerator into three parts: baseline (when no
one is using the fridge), defrost (energy consumption when
the fridge is in defrost mode) and usage (energy consump-
tion due to fridge usage). Then, we develop techniques to
identify users with 1) much more energy due to fridge us-
age than the norm 2) much more energy due to defrost than
the norm, or 3) fridges that are malfunctioning or miscon-
figured, even during baseline operation. We evaluate our
model using a dataset with power traces from 95 refrigera-
tors. Results indicate that our model can break down fridge
usage into its three components with only 4% error. Addi-
tionally, the three types of feedback could help users save
up to 23%, 25% and 26% of their fridge energy usage, re-
spectively. These techniques provide targeted feedback with
specific actions, e.g. fix or repair the fridge, and so we expect
this energy savings to be sustainable. Similarly, we develop
new techniques to differentiate homes with and without set-
back schedules on the HVAC system based on their HVAC
power traces and outdoor weather patterns. This informa-
tion can be used to give feedback to install a programmable
thermostat. We evaluate these techniques with power traces
from 58 homes and results indicate that our techniques can



classify homes with 84% accuracy. Based on these results,
we conclude that disaggregation does indeed have the po-
tential to provide targeted, actionable feedback that could
lead to sustainable energy savings.

Second, we explore whether existing energy disaggrega-
tion techniques provide power traces with sufficient fidelity
to support the feedback techniques that we created, and
whether more accuracy disaggregation results translate into
more energy savings for the users. To do this, we re-evaluate
the feedback techniques above using power traces produced
by disaggregation algorithms instead of those produced by
direct submetering. We use three benchmark algorithms
provided in an open source toolkit called NILMTK [7]. We
verified that these algorithms and the parameters we use
produce disaggregation accuracies comparable to or better
than the best results published in the literature. Nonethe-
less, the feedback techniques that we developed become al-
most completely ineffective when using the disaggregated
energy traces. In some cases, they failed to identify over
70% of the homes that should be getting feedback and falsely
flagged 14% homes of additional homes that should not re-
ceive feedback.

To conclude, we discuss why feedback accuracy is low
even while disaggregation accuracy is high: accurate energy
breakdown feedback (i.e. “Your fridge accounts for 8% of
your energy bill”) can be given even if the power traces have
many errors as long as those errors average out over time.
However, more targeted and actionable feedback (i.e. “Your
fridge is defrosting too often; fix the seal.”) depends on spe-
cific features of the power traces. Our results indicate that
the disaggregation community needs to revisit the metrics
by which it measures progress. Part of this process will be
to look through the lens of applications, including but not
limited to the feedback techniques presented in this paper,
to find the aspects of power traces that are most important.
After all, “what you measure is what you get.”

2. RELATED WORK
The field of NILM was found by George Hart in the early

1980s. His early works were motivated towards the devel-
opment of low cost and easy to use methods for utilities to
carry out residential appliance load research [16]. Existing
load research methods during that time instrumented the
individual branches and appliances. Three potential appli-
cations of NILM were proposed in the early works: i) con-
trolling deferrable loads, and ii) providing detailed energy
usage to the end user, and iii) identifying faulty appliances.

Between the early 1980s and late 2000s, the field had
a steady progress. In the late 2000s, governments started
rolling out smart meters and it was easier than ever before
to collect data for evaluating NILM. Prior to smart meter
rollouts, work in the field primarily consisted of pilot deploy-
ments. In 2011, the REDD [20] data set for NILM research
was released. Its aim was to mimic the progress made in
computer vision research by the availability of public data
sets. Since then, the field has shown exponential growth1.
More than 10 public data sets have been released in the
past five years [7, 17]. This exponential growth in the field
has also seen a lot of differences in assumptions and evalu-
ation metrics. Recently, there has been an interest in high

1http://blog.oliverparson.co.uk/2015/03/
overview-of-nilm-field.html

frequency features which can identify low power appliances
unlike most previous work [14, 13, 2]. A subsection of the
research has viewed the disaggregation problem from the
perspective of correctly identifying the operational state of
an appliance and thus evaluates NILM accuracy using met-
rics such as precision and recall on appliance states. Such
work is often motivated by applications in activity recog-
nition [14, 26, 28]. Other research often looks at the dis-
aggregation problem as providing a fine-grained electricity
bill, where the consumers can see how much each appliance
costs them per month. Such work often uses metrics such as
percentage of energy correctly identified. Such was the vari-
ety of metrics used in the literature that it became virtually
impossible to compare two papers. To ease the comparison
of NILM research, there have been recent efforts with an
aim to standardise NILM metrics and provide benchmark
algorithms [7, 8].

Recently, there has been an increased focus towards devel-
oping NILM applications related to providing energy feed-
back. In terms of the techniques and evaluation we propose
in this paper, there are three works that relate well to ours.
Chen et al. [9] did a study on 124 apartments from an apart-
ment complex having same appliances and amenities, where
they collected hourly appliance level energy consumption.
They explain the variation in fridge energy across homes
to be caused by behavioural differences. They estimate the
energy savings possible if fridges older than 10 years are re-
placed by newer efficient fridges. Our work differentiates
from their work by evaluating feedback models on disag-
gregated power traces. Since scaling appliance level meter-
ing remains a huge challenge, we believe that there is a lot
of value in evaluating the feedback on disaggregated power
traces. Further, we evaluate our feedback methods on a wide
range of homes that have variable appliances and amenities,
unlike the data set used by Chen et al.

Parson et al. [24] also target feedback on the value of shift-
ing to a new fridge across 117 homes from the UK. Our work
is similar to theirs as they also give feedback based on disag-
gregated power trace. A key differentiating factor between
our approach and the work by Parson et al. and Chen et
al. is that rather than dismissing a high energy consuming
fridge as inefficient, our fridge model enables us to answer if
high energy is due to high usage, or is the high usage simply
due to higher fridge capacity. Importantly, our work pro-
poses feedback methods which are more fine grained than
providing feedback just based on appliance energy usage,
which can be highly misleading. For instance, when com-
paring the summer HVAC usage of two homes in a colder
and warmer climate, feedback based only on HVAC energy
usage may indicate that the home in the warmer climate is
doing worse. Instead, the energy feedback needs to consider
the climate before providing feedback.

Barker et al. [4] make a case of emphasizing NILM ap-
plications over accuracy. Their evaluation deals with the
“long” execution times associated with disaggregation using
current NILM algorithms, which effectively rule out a host
of real-time applications. Our work is in the same vein,
but instead does an empirical evaluation of energy feedback
methods in an offline fashion. We believe that even before
we address the issue of real-time applications, we need to
evaluate the accuracy associated with the intended appli-
cations. Our work also shows the efficacy of the proposed
feedback methods on a large number of homes.



3. DATA SETS
We now describe the two data sets that we will be using

throughout the rest of this paper. To assess the value of
energy disaggregation, we need a data set containing a large
number of homes. We thus use the Dataport data set [22],
which is the largest publicly available dataset containing
submetered and aggregate electricity consumption. The first
release of the data set contains minutely power readings
across different appliances from 240 homes in Austin, Texas
from January through July 2014. More recently, a newer ver-
sion of the data set has been released which contains data
from 800 homes for close to 3 years. In addition to power
data from different appliances, the data set contains infor-
mation on energy audits, home survey and internal temper-
ature for a subset of homes. Since our fridge work predates
the latest release, we use the first release made available in
NILMTK [7] format consisting of data from 240 homes for
our fridge analysis.

The data set contains power data logged every minute for
172 fridges. Of these, we filtered out 77 fridges that had
data collection problems such as missing data and multi-
ple appliances on the same sensor. We use the remaining
95 fridges for evaluation of our proposed techniques. The
data set also contains temperature setpoint data from 2013.
Since, the initial release does not have electricity data from
2013, we use the 2013 data from the newer release for our
HVAC feedback analysis. We use the 58 homes having both
the setpoint and power data information in our analysis.

We also collected data from four identical fridges oper-
ated in identical ambient conditions across four floors of the
computer science building at UVa. We put Hobo loggers2 to
collect power data at 1 Hz frequency from these four fridges.
For one of the fridge to which we had easy access to, we col-
lected door status for both doors and the freezer unit and
internal temperature data at 1 Hz frequency, in addition to
the power data. We collected data under different controlled
and uncontrolled settings for two weeks.

4. APPLIANCE ENERGY MODELLING
Having described the data sets that we use, we now dis-

cuss energy models for fridge and HVAC, both of which con-
tribute significantly to overall home energy consumption and
are available in most homes. The key idea behind these en-
ergy models is to extract features from the power data which
serve as the basis for the energy feedback methods that we
later describe in Section 5.

4.1 Fridge energy modelling
A fridge is a compressor based appliance where the mo-

tor duty cycles to maintain the fridge at a set temperature.
When the compressor is ON, the refrigerant transfers heat
from inside the fridge to the outside [11]. The compressor
turns ON and OFF at a small offset temperature above and
below the set temperature. Since the fridge is operated at
a lower temperature than the surroundings, there is always
heat leakage from the outside into the inside of the fridge,
which is proportional to the temperature difference between
the fridge setpoint and ambient temperature. In the absence
of fridge usage (such as opening fridge door), the compressor
typically duty cycles at the same rate, shown as the base-
line compressor usage in Figure 1 which occurs in the early

2http://www.onsetcomp.com
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Figure 1: Breakdown of fridge energy consumption
into baseline, defrost and usage

morning hours of the shown fridge. Each time the fridge
is opened, the leakage from the ambient environment in-
creases and the compressor has to run longer to remove this
extra heat. The addition of items in the fridge also causes
the compressor to run longer due to the increased thermal
mass. Both these factors cause an increase in the duty per-
centage of the fridge. The increased compressor ON and
decreased compressor OFF durations are shown as usage in
Figure 1. For efficient running of the fridge, fridges defrost
periodically to get rid of frost developed on the cooling coil.
Defrosting is done via the defrost heater and introduces
heat into the system, which is removed in the next few com-
pressor cycles having higher duty percentage. These cycles
can be seen in Figure 1.

Thus, the fridge energy consumption can be broken down
into three components: usage, defrost and baseline. We now
describe the procedure for breaking down fridge energy into
these three components:

1. Finding baseline duty percentage: Duty percent-
age of a fridge cycle (c) is given by the ratio of the compressor
ON duration to the total fridge cycle. Or,

Duty percentage (c) = ON duration(c)
ON duration(c)+OFF duration(c)

Baseline duty percentage is found as the median of the
duty percentage during early morning hours (1 to 5 AM)
over the duration of the dataset. Using median overcomes
the cases when a home may have high fridge usage on some
days.

2. Finding defrost energy: Defrost energy comprises
of two parts: energy consumption when the fridge is in the
defrost state and the extra energy consumed in the regular
compressor cycles that follow the defrost state. We assume
that a defrost cycle causes an impact on the next D compres-
sor cycles. For these D cycles, the extra energy consumed
is found by the additional duty percentage over the baseline
of the compressor cycles following the defrost cycle as:

Extra compressor energy due to defrost

=

D∑
c=1

(Duty percentage (c) - Baseline duty percentage)

× (ON duration(c) + OFF duration(c))

× Fridge compressor power consumption

(1)

Energy consumption when fridge is in the defrost state
can be trivially calculated.



3. Finding usage energy: As a prerequisite to finding
usage energy, we need to first find usage cycles, which we de-
fine as fridge cycles that are affected by fridge usage. After
removing the defrost cycles and the subsequent D cycles, we
look for cycles having duty percentage that is P% more than
the baseline duty percentage. The intuition behind choos-
ing a parameter P is that fridges may show some inherent
variation in duty cycle percentage independent of usage. We
assume that this variation is within P% of the baseline duty
percentage. After finding these U usage cycles, the usage
energy can be calculated as: Usage energy

=

U∑
c=1

(Duty percentage (c) - Baseline duty percentage)

× (ON duration(c) + OFF duration(c))

× Fridge compressor power consumption

(2)

4. Finding baseline energy: All the cycles that are not
affected due to defrost or usage contribute towards baseline
energy and their energy consumption can be summed to find
baseline energy.

4.1.1 Evaluation of fridge model
We now evaluate the accuracy of our fridge modelling ap-

proach. We use our collected data from the UVa CS building
for this evaluation as the Dataport data set does not have
labels for fridge usage. Using door sensor data, we manually
annotated 3 days for usage cycles from the fridge for which
we had instrumented in our data set. We found that the
defrost cycle impacts the next 3 cycles, and we thus chose
D=3. It should be noted that choosing a slightly different
value of D is only going to change marginally the usage and
defrost energy numbers since defrost cycles are easily out-
numbered by regular cycles. The other parameter in our
evaluation, percentage threshold (P ) for labelling usage cy-
cles is more important due to the expected high number of
usage cycles.

We now define the three metrics used to evaluate our
fridge modelling:

1. % Usage energy error for fridge, which suggests how
accurately our model captures the energy usage when
a fridge is being actively used:
|Predicted fridge usage energy - Actual fridge usage energy|×100%

Actual fridge usage energy
2. Precision on fridge usage cycles:
|Correctly predicted fridge usage cycles|

# Predicted fridge usage cycles
3. Recall on fridge usage cycles:
|Correctly predicted fridge usage cycles|

# Total fridge usage cycles
Figure 2 shows the usage energy error, precision and re-

call on usage cycles as they vary with P . At a P of 11-16%,
the usage energy error is less than 2%. Usage energy error
remains below 4% for P between 9 and 24, showing that the
prediction remains useful within a wide percentage thresh-
old. A precision of 1 is not observed until P = 17% due
to the presence of a single fridge cycle having a high duty
percentage despite being unrelated to usage. This is due
to the fact that rare cycles may show an inherent deviation
from the regular duty percentage. At P = 11%, the recall
drops from 1. This is due to a usage cycle which shows less
than 10% deviation from baseline duty percentage. We can
conclude that our model is applicable even within a broad
range of parameters.
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Figure 2: Our model for breaking fridge energy into
usage, baseline and defrost is accurate to within 4%
energy error for a wide range of percentage thresh-
old above baseline duty percentage.

4.2 HVAC energy modelling
Across the globe, HVAC is the single largest contributor

to a home’s energy bill [25]. By optimising the HVAC set-
point schedule, upto 30% of HVAC energy can be saved [21].
Giving homes feedback on their setpoint schedule is likely to
have a big impact. Thus, we try to build an HVAC model
to predict setpoint temperature from HVAC energy data.
Since HVAC energy usage is highly dependent on external
weather conditions, we incorporate weather data into our
HVAC model. While we explain our model for the cool-
ing season (summers, when HVAC is used for cooling), it
is equally applicable to the heating season. Our model is
based on the following assumptions:

1. HVAC energy is impacted by weather conditions such
as humidity, wind speed and temperature.

2. HVAC energy consumption is proportional to the dif-
ference in external temperature and home setpoint tem-
perature.

3. Programmable thermostats use the following four set-
point times: night hours from 10 PM to 6 AM; morn-
ing hours from 6 AM to 8 AM; work hours from 8 AM
to 6 PM; evening hours from 6 PM to 10 PM. These
times are as per the schedule times reported by Ener-
gyStar.gov [12].

4. HVAC energy during an hour is zero if the HVAC was
not used during this hour

Based on the first assumption, we have: HVAC energy ∝
humidity; HVAC energy ∝ wind speed. Based on the second
assumption, we have HVAC energy∝ (External temperature-
internal temperature setpoint). Based on the third assump-
tion, we have four different temperature setpoints during the
day. We use four proportionality constants (a1 through a4)
corresponding to these four setpoint times, describing how
strongly the temperature delta between external and set-
point temperature affects HVAC energy consumption. To
convert our HVAC model into a regression model, we add a
binary variable (is it nth hour) which is 1 if the data is from
the nthhour and 0 otherwise. We also use a binary vari-
able indicating if HVAC was used during the nth hour based
on the fourth assumption. Combining all of the above, our
HVAC models energy consumed in the nth hour of the day
as follows:
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Figure 3: The predicted setpoint temperatures from
our HVAC model have a high offset from actual set-
point temperatures.

HV AC energy(n) = a1 × [(External temperature(n)

−Night hours setpoint)

× Is it 0thhour × IsHV AC used(n)

+ . . .

(External temperature

−Night hours setpoint)

× Is it 5thhour

× IsHV AC used this hour]

+ a2 × . . .

+ a3 × . . .

+ a4 × . . .

+ a5 × humidity(n)

+ a6 × wind speed(n)

(3)

Our non-linear model has a total of 10 parameters: a1

through a6 and four setpoint temperatures.

4.2.1 Evaluation of HVAC model
We now evaluate our HVAC model on its ability to learn

the temperature setpoints. We calculate hourly HVAC en-
ergy usage for the 58 homes containing both HVAC power
and setpoint information. This forms the LHS of Equation
3. We download hourly weather data from Forecast.io web
service3 and use linear interpolation to fill missing readings,
similar to the work done by Rogers et al. [27]. Finally, we
used non-linear least squares minimisation using the Python
lmfit package4to estimate the 10 parameters in our model.
We also constrain learnt setpoints to be within 60 and 90F.

Figure 3 shows that our model is inadequate in accurately
predicting setpoint temperatures. This is most likely due to
the fact that some of the coefficients in our model are not
independent and the fact that our model does not consider
thermal mass of the building. Our main objective is finding
homes which need HVAC setpoint feedback. While an accu-
rate prediction of setpoint temperature would have allowed
us to do the same, in section 5.4, we explore machine learn-
ing based solutions to use the parameters from our HVAC
model to predict homes needing setpoint feedback. A key
takeaway which we see later in section 5.4 is that these learnt
parameters are useful in providing feedback to homes for set-
point optimisation.

3http://forecast.io
4http://lmfit.github.io/lmfit-py/
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Figure 4: 13 out of 95 homes (shown in red) from
the Dataport data set can be given feedback based
on their fridge usage, potentially saving up to 23%
of fridge energy.

5. ENERGY FEEDBACK METHODS
In this section, we develop and demonstrate some exam-

ples of how NILM could be used to provide feedback to users
to reduce their energy usage based on the appliance energy
modelling we previously discussed. These are only exam-
ples, and the analysis presented later in this paper would
apply to any applications of NILM.

5.1 Fridge usage feedback
Having shown that we can accurately breakdown fridge

energy into usage, defrost and baseline, we now show how
we can give feedback to homes based on this breakdown. In
this section, we target homes based on fridge usage, where
the potential feedback could be to reduce interactions with
fridge, increase temperature setpoint, etc. We use robust
estimator of covariance based outlier detection [15] to de-
tect such homes. The outlier detection method is applied
on two dimensions: usage energy% and proportion of us-
age cycles. We apply this outlier detection method on the
95 homes from the Dataport data set. We divide this two
dimensional home data into four quadrants through the me-
dians on usage energy% and proportion of usage cycles. Fig-
ure 4 shows the homes that can be given feedback based on
their fridge usage energy in red. The black ellipse is the
boundary outside which points are predicted to be outliers.
Feedback can be given to homes in the first quadrant (shown
in green), that have a high proportion of usage cycles and
high usage energy. Homes in this category have a lot of cy-
cles affected by usage and thus have high usage energy. 13
homes fall into this category and can save up to 23% of their
fridge usage energy. Energy saving potential is calculated as
the difference between current energy consumption and me-
dian energy consumption. There are no homes in the second
quadrant, which denotes homes which have a small propor-
tion of cycles affected by usage and yet having a high usage
energy contribution. These homes could possibly have few
interactions with the fridge, but, have a high usage energy
due to a low fridge internal setpoint, where each interaction
with the fridge leads to a lot of heat flow from the outside.

5.2 Fridge defrost feedback
Our method for providing feedback based on defrost is

similar to the method of providing feedback based on usage.
High defrost energy could be indictive of a broken fridge
seal. We use outlier detection methods on two dimensions:
defrost energy% and number of defrost cycles per day and
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Figure 5: 17 out of 95 homes (shown in red) from
the Dataport data set can be given feedback based
on their fridge defrost energy, potentially saving up
to 25% of fridge energy.

give feedback to the homes lying in the first and the sec-
ond quadrant. Number of defrost cycles per day is more
interpretable and relatable than proportion of defrost cycles
(which is going to be a very small floating point number).
Figure 5 shows the homes that can be given feedback based
on their fridge defrost energy. 15 out of 95 homes fall into the
first quadrant, and 2 homes fall into the second quadrant.
These 17 homes can save up to 25% of their fridge energy.
While homes in the first quadrant have high defrost energy
due to high number of defrost cycles, homes in the second
quadrant are likely to have a fridge malfunction whereby a
fridge remains in the defrost state for a long time.

5.3 Fridge power feedback
We next looked into providing feedback in case we know

the make and age of a fridge, and we have data from fridges
of the identical make and age. Ideally, all such fridges should
have similar power draw. However, we found four such pairs
in the Dataport data set (LG, Frigidaire and two of Sam-
sung) where one of them has a significantly higher fridge
steady state and transient power. Transient power is defined
as the short duration power when the fridge compressor mo-
tor starts. This power is higher than the steady state power,
which is defined as the power draw of the fridge once the
transient has ended. Figure 6 shows these four fridges and
the differences in their steady state and transient powers. In
order to eliminate the hypothesis that such differences could
arise due to the difference in ambient conditions of these
fridges, we also add in this figure the four General Electric
fridges from our deployment. 3 of them have a <steady
state, transient> power consumption of <80,100> Watts,
while the fourth one has <120, 1310> Watts. Since these
four fridges were operated under identical ambient condi-
tions, the possibility of ambient conditions causing a power
difference between these is ruled out. The arrows in the fig-
ure point towards the fridge consuming extra power. These
fridges consume upto 26% more energy than their identi-
cal counterparts, where extra energy consumption is found
by estimating the energy consumption if the fridge operated
with lower steady state power. In order to reduce the false
positive rate in giving such feedback about fridge malfunc-
tion, we can choose to give feedback when the difference in
steady state power is atleast 10%, where we assume that
fridges can record upto 10% variation in their power con-
sumption owing to several factors including measurement
errors.

Figure 6: Identical fridges with the same model and
age can have differences of 10% or more in steady
state power levels. Feedback about failing or mis-
configured fridges can save up to 26% energy.
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Figure 7: Our techniques correctly classify 84.4% of
the homes as either having or not having a setpoint
schedule, based on submetered HVAC data.

5.4 HVAC setpoint feedback
We previously saw in section 5.4, that our HVAC model

produces an offset in the learnt setpoint temperatures. In-
stead of using the learnt setpoint temperatures directly to
find homes needing HVAC setpoint feedback, we use ma-
chine learning methods for the same. We calculate an HVAC
efficiency score for the 58 homes in the Dataport data set
on a scale of 0 to 4 based on recommended setpoint tem-
perature from EnergyStar [12] as follows: 1)Morning score
= 1 if morning setpoint temperature >78F, 0 otherwise; 2)
Evening score = 1 if evening setpoint temperature > 78F, 0
otherwise; 3) Work hours score = 1 if work hours setpoint
>85 F, 0 if setpoint <=78, (85-setpoint)/7 otherwise; and
4) Night score = 1 if setpoint >82F, 0 if setpoint <=78F,
(82-setpoint)/4 otherwise. We decide that 34 homes that
have an overall score of 2 or less can be given feedback to
optimise their HVAC setpoints.

In addition to the 10 parameters of the HVAC model, we
add additional features such as total energy used in work,
morning, night and evening hours and the number of min-
utes HVAC system was on during these times to our machine
learning methods We use 2-fold cross validation and a grid
search on the feature space to find that the feature <a1,
a3, Energy in evening hours, Mins HVAC usage in
morning hours> used by the Random Forest classifier give
the optimal accuracy of 84.4% as shown in Figure 7.



Authors Year Dataset #Homes Algorithm Fridge HVAC
RMSE (W) Error Energy % F-score RMSE (W) Error Energy% F-score

Kolter [19] 2012 REDD [20] 6
Additive
FHMM

- 62.5 ∆ - - - -

Parson [23] 2012 REDD [20] 6
Difference
HMM

83 55 - - - -

Parson [24] 2014 Colden 117
Bayesian
HMM

45

Batra [7] 2014 iAWE [6] 1 FHMM - 50 0.8 - 30 0.9
Current work Data port 240 CO? 85 19 0.65 600 15 0.87
Current work Data port 240 FHMM? 95 20 0.63 650 18 0.89
Current work Data port 240 Hart 82 21 0.72 890 23 0.76

Table 1: Benchmark algorithms on the Dataport dataset give comparable performance to existing literature.
? Both CO and FHMM achieve best performance for N=2, top-K=3.
∆ Kolter’s paper includes a slightly different metric from which we derived this number.

6. EVALUATION OF NILM FOR FEEDBACK
Having described our methods for providing energy feed-

back to homes based on submetered data and showing that
these models can give good feedback, we now evaluate how
accurately do current NILM approaches match these feed-
back. We now describe the experimental setup for evaluating
NILM performance on the Dataport data set.

6.1 Experimental setup
We use NILMTK [7] to perform our NILM experiments.

We use the 3 reference implementations made available in
NILMTK, which we describe now.

6.1.1 NILM models
Combinatorial optimisation (CO): CO was proposed

by George Hart in his seminal NILM paper [16]. CO models
each appliance to consist of a fixed number of states and
assigns different power levels to each of these states. The
optimisation function involves finding the optimal combina-
tion of appliance states for different appliances which min-
imises the difference between predicted and observed aggre-
gate power.

x̂
(n)
t = argmin

x̂
(n)
t

∣∣∣∣∣ȳt −
N∑

n=1

ŷ
(n)
t

∣∣∣∣∣ (4)

Here, x̂
(n)
t is the state of the nth appliance at time t;ȳt is the

aggregate power consumption at time t and ŷ
(n)
t is the power

consumption of nth appliance at time t. The time complex-
ity of CO is exponential in the number of appliances and
hence it becomes intractable for large number of appliances.

Factorial hidden Markov model (FHMM) :FHMM
approach is more recent and built upon the finite state ma-
chines suggested by Hart [16]. In an FHMM, each appliance
is modelled as a hidden Markov model (HMM), where the
hidden component is its state, and the observed component
is its power draw. Like CO, FHMM has time complexity
exponential in the number of appliances and thus become
intractable for a large number of appliances.

Hart’s steady-state algorithm: Hart in his seminal
work presented an event based approach that we here on re-
fer to as Hart’s algorithm [16]. This approach finds events in
the aggregate power time series and assigns them to appli-
ances. An event is said to occur when the aggregate power
changes beyond a threshold. During the training phase,
Hart’s algorithm pairs rising and falling edges whose mag-

nitude difference fall within a threshold. Next, it clusters
these rising-falling pairs where each cluster represents an
appliance. Since this algorithm is unsupervised in nature, it
requires manual labelling to assign appliance labels to these
clusters.

These 3 algorithms cover both classes of disaggregation
algorithms- CO and FHMM are non-event based, while Hart’s
algo is event based. While FHMM is a recent develop-
ment, Hart’s is the seminal work. While we do not evaluate
other NILM algorithms (primarily due to the unavailability
of their implementation), we believe that the current algo-
rithms sufficiently cover NILM algorithms broadly.

6.1.2 NILM metrics
Having discussed the NILM models, we now discuss the

conventional NILM metrics to evaluate these. We use the
standard definition of NILM metrics as made available in
NILMTK [7].

1. % Error in Energy: |Predicted energy - Actual energy|×100%
Actual energy

2. Root Mean Squared Error (RMSE) Power:√
1
N

N∑
i=1

(Predicted poweri −Actual poweri)
2

3. F-score: First, disaggregation is converted to a binary
classification problem where an appliance is ON if it
consumes more than a threshold and OFF otherwise.
Next, the standard definition of F-score is used on this
binary classification task.

6.1.3 Parameter optimisation and training strategy
Having discussed the metrics used for evaluating NILM

performance, we now discuss the tunable parameters in these
NILM models. Since both CO and FHMM are computation-
ally intractable, NILM researchers often select the top-K ap-
pliances in terms of energy consumption to reduce the state
space. Another parameter in these models is the number of
states (N) to use for modelling an appliance (2 states means
that an appliance can either be ON or OFF). We vary K
from 3 to 6 and N from 2 to 4 and find the accuracy of
disaggregation for both fridge and HVAC. We used half of
the data for training and the other half for evaluating dis-
aggregation.

6.1.4 NILM accuracy
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Figure 8: NILM algorithms show poor accuracy in identifying homes which need feedback for high fridge
usage energy. Red dots indicate the homes which should be getting feedback based on analysis of submetered
fridge data, while these algorithms would give feedback to all homes in the green region outside the elliptical
boundary.

We now present the results of NILM evaluation on the
Dataport data set. We also compare our results with the
state of the art. From Table 1, we can see that for both
fridge and HVAC, the benchmark algorithms we use are
comparable in performance to existing literature. We could
not include several recent works due to different reasons.
Shao et al. [29] and Kim et al. [18] define precision and
recall in terms of identification of appliance power within
bounds. It is non-trivial to convert their metrics in terms
of ours. Barker et al. [5] show that the performance of their
tracking algorithm is comparable to Additive FHMM, which
we already consider in our comparison. Kolter et al. [20]
do not provide appliance level metrics. Since none of the
above-mentioned works gave results on HVAC disaggrega-
tion under residential settings, we used the numbers given
in the benchmark evaluation accompanying NILMTK [7]. It
should be noted that many of the other approaches we com-
pare with in Table 1 make lesser assumptions such as the
availability of training data. However, these do not affect
our argument since they do not achieve substantially better
performance according to conventional NILM metrics.

6.2 Fridge usage feedback
Having established that our NILM performance is at par

with the state-of-the-art, we now see how accurate fridge
usage feedback we can provide with the disaggregated power
trace. Figure 8 shows that all three NILM algorithms have
poor accuracy in identifying homes that need feedback for
high fridge usage. False negatives (FN) are those homes
that should be getting feedback but are not getting, and
false positives (FP) are those homes that would wrongly get
feedback. We now explain the reasons for the poor accuracy
of the used NILM algorithms.

During the night hours when typically only background
appliances such as fridge are running, Hart’s algorithm has
good disaggregation accuracy. Due to this, Hart’s algorithm
closely matches the baseline duty percentage computed on
submetered data as shown in Figure 9. However, Hart’s al-
gorithm is susceptible to detection of false events and miss-
ing true events, especially during active hours when appli-
ances similar in magnitude to the fridge may be operat-
ing. Thus, Hart’s algorithms underpredicts and overpredicts
fridge compressor cycle durations during the day creating a
deviation in fridge usage. While the change in predicted
cycle durations has a minimal impact on conventional met-
rics, it has a significant impact on fridge usage energy met-
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Figure 9: The baseline duty percentage found on
Hart’s disaggregated power traces matches closely
to the submetered one, while CO and FHMM show
a wide variation from submetered.

ric. The median baseline duty percentage found by CO and
FHMM are higher than the median baseline duty percentage
on submetered data. Owing to higher baseline duty percent-
age, usage energy in these homes is lower than submetered,
thereby explaining the high false negative rate. The reason
behind CO and FHMM finding a high baseline duty percent-
age is that the objective function in both these algorithms
includes minimising the difference between aggregate power
and sum of power for predicted appliances. To satisfy this
objective, these algorithms predict fridge to be ON longer
than actual during the night hours when typically few loads
are used. The high false positive rate can be explained by
the small number of homes for which the baseline duty per-
centage learnt is much lower than that for submetered. This
causes these homes to have a high usage energy, and thus
predicted as candidates to give feedback.

6.3 Fridge defrost feedback
We find that the our approach of breaking down fridge en-

ergy into baseline, defrost and usage is unable to find even a
single defrost cycle when fed the disaggregated power data.
This is due to the inadequacy of the used NILM methods in
effectively learning and disaggregating the defrost state. CO
and FHMM rely on KMeans and Expectation Maximisation
algorithms respectively for learning the different states of an
appliance. Due to defrost events being rare in comparison
to regular usage, these algorithms are not able to accurately
associate a cluster with the defrost state. Instead, these
algorithms try to find multiple clusters to explain the vari-
ation in fridge power when the compressor is ON. Hart’s
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Figure 11: Classification of homes into those with setback schedules decreases from 84% with submetered
power traces to 53%, 69%, and 62% respectively with power traces produced by the three NILM algorithms.

algorithm, which relies on pairing rising and falling edges of
similar magnitude in the power signal, is unable to learn the
defrost state as the defrost state has a significantly different
magnitude of rising and falling edge.

6.4 Fridge power feedback
We now show the efficacy of feedback based on fridge

power given NILM power traces. Since there were only 4
homes in the dataset having a corresponding fridge of same
make and age, we evaluate this feedback assuming that for
each fridge in the data set we had a corresponding identical
fridge. For the identical fridge, we use the actual steady
state power as its learnt steady state power. Ideally, none of
these 95 fridges should be getting feedback based on fridge
power. Figure 10 shows that NILM algorithms produce a
high number of false positives due to estimating the steady
state power levels with errors over 10%.

Hart’s algorithm learns higher than actual steady state
power for a large number of fridges. This can be explained by
its clustering strategy during the learning stage where pairs
of rising-falling edges are clustered. Clustering is susceptible
to learning fewer clusters than actual appliances, and thus
some of the learnt clusters could span multiple appliances.

For CO and FHMM, the high number of false positives
can be explained by the fact that using N=2 states may
be optimal for NILM metrics, but is suboptimal for learn-
ing fridge steady state power. For N=3, the number of
false positives reduces to 17 and 5 respectively for CO and
FHMM. Within CO and FHMM, the better performance of
FHMM can be attributed to it modelling time relationships
between states. Thus, it is more robust to assigning clusters
to power values that don’t correspond to an actual fridge
state, in comparison to CO.

6.5 HVAC setpoint feedback
We now evaluate the efficacy of HVAC feedback based on

disaggregated power traces. Figure 11 shows that the classi-

0 5 10 15 20 25

Error in Prediction of Minutes of HVAC Usage (%)

CO

FHMM

Hart Morning
Night

Figure 12: NILM algorithm have high accuracy
overall, but have higher error in the morning be-
cause other appliances are being used. However,
the morning hours are critical to inferring whether
a home has a setback schedule.

fication of homes into those with setback schedules decreases
significantly for all NILM algorithms. We now explain the
low classification accuracy based on the features used by
Random Forest classifier. Of the four features used, a1 and
a3 are hard to interpret, and thus we provide an explanation
based on Mins HVAC usage during morning hours. Most of
the HVAC usage in the data set occurs during the night
hours. Thus, NILM accuracy is likely to be highly depen-
dent on night time HVAC disaggregation. Since, only HVAC
and fridge would be typically used in the night, and, HVAC
has a distinct much higher power signature than the fridge,
NILM accuracy for HVAC is decent (as per Table 1). How-
ever, during the morning hours, when typically there is more
activity in the home, NILM accuracy for HVAC is expected
to be lesser. In Figure 12, we compare the error in predic-
tion of minutes of HVAC usage for different algorithms when
compared to submetered. It can be seen that for all algo-
rithms, accuracy is higher in the night. Thus, despite not
having a high impact on NILM accuracy, the high error pre-
diction of minutes of HVAC usage affects our classification
accuracy.



7. CONCLUSIONS
In this paper, we show that disaggregated power data has

the potential to provide targeted, actionable energy feed-
back to homes. However, we found that the state-of-the-art
NILM accuracy isn’t effective in enabling such feedback. We
believe that the community needs to revisit the metrics for
gauging NILM performance, and our work is a step in that
direction. We finally conclude that- “If you can measure it,
you may not necessarily be able to improve it.”

8. LIMITATIONS AND FUTURE WORK
Our HVAC energy model is far from perfect. In fact, if it

were perfect in predicting HVAC temperature setpoints, we
would not need to train a classifier on top. However, it must
be noted that our work is tangential to such HVAC mod-
elling and can build upon better HVAC models to provide
feedback. In the future, we would like to improve our HVAC
model with an aim of more accurate feedback. We plan to
develop energy feedback models for some of the other ap-
pliances having a high energy impact, such as water heater.
We also plan to use long term trends in finding homes need-
ing feedback. For instance, over time a fridge may develop
an anomaly causing excessive energy usage. Further, this
work shows a bounds on the savings possible and does not
explore whether users can actually adopt and apply the ad-
vice successfully, which we leave for future work.
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