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ABSTRACT
Buildings across the world contribute significantly to the
overall energy consumption. Targeted feedback can help oc-
cupants optimise energy consumption. In our first work we
present techniques for actionable feedback across fridges and
air conditioning (HVAC) units, which can save upto 25% of
fridge energy and identify homes needing feedback on HVAC
setpoint schedule with 84% accuracy. In our next work, we
do an extensive sensor deployment in a home in Delhi, India;
monitoring appliance level power, home aggregate power
and other ambient parameters. Our study presents vari-
ous insights unseen in the developed world, such as: fre-
quent voltage brownouts, poor network reliability, long last-
ing blackouts, heavy dominance of fridge and HVAC to over-
all energy consumption. Our study verifies that measuring
appliance level power scales poorly in cost and maintenance.
Non-intrusive load monitoring (NILM) is viewed as a viable
alternative where machine learning techniques are used to
break down aggregate household energy consumption into
contributing appliances. Despite the existence of a rich vol-
ume of literature in NILM, it remained virtually impossi-
ble to compare NILM works due to: i) lack of existence of
benchmarks; ii) previous work tested on single data set; iii)
inconsistent metrics. To address these challenges we devel-
oped an open source toolkit: Non-intrusive load monitoring
toolkit (NILMTK), designed specifically to enable the com-
parison of NILM algorithms. While many new NILM tech-
niques have been proposed in recent times, it is not clear
if these can enable energy saving and whether higher accu-
racy translates to higher energy saving. We explore these
questions in our recent work and find that existing energy
disaggregation techniques do not provide power traces with
su�cient fidelity to support the feedback techniques we de-
veloped in our earlier work. Our results indicate a need to
revisit the metrics by which disaggregation is evaluated.

1. RESEARCH SUMMARY
Buildings across the globe contribute significantly to the
overall energy consumption [4]. Previous research has shown
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the potential of energy saving by providing targeted energy
consumption feedback to residents. We now discuss our
work on providing actionable feedback based on appliance
level power data.

1.1 Actionable feedback from appliance data
We focus on feedback on refrigerators and HVAC, because
they contribute significantly to overall energy consumption
and are available in most homes. In our first work [5], we
develop a model that breaks the power trace of a refrigerator
into three parts: baseline (when no one is using the fridge),
defrost, and usage (energy consumption due to fridge us-
age). Then, we developed techniques to identify users with
1) much more energy due to fridge usage than the norm
2) much more energy due to defrost than the norm, or 3)
fridges that are malfunctioning or misconfigured. We eval-
uated our model using a dataset with power traces from
95 refrigerators. We found that our model can break down
fridge usage into its three components with only 4% error.
Additionally, the three types of feedback could help users
save up to 23%, 25% and 26% of their fridge energy us-
age, respectively. Similarly, we developed new techniques to
di↵erentiate homes with and without setback schedules on
the HVAC system based on their HVAC power traces and
outdoor weather patterns. This information can be used to
give feedback to install a programmable thermostat. We
evaluate these techniques with power traces from 58 homes
and results indicate that our techniques can classify homes
with 84% accuracy. Based on these results, we conclude that
NILM does have the potential to provide targeted, action-
able feedback that could lead to sustainable energy savings.
1.2 Residential deployment
Having found that appliance level power data can provide
actionable feedback, we decided to do a dense residential
deployment in a home in Delhi, India. All previous resi-
dential deployments had been done in the developed world.
The philosophy behind our deployment [2] was to leave no
stone unturned, whereby, we deployed 33 sensors for 73 days
across a three storey home as shown in Figure 1. These sen-
sors measured appliance level power consumption, aggregate
home power consumption, utility water readings, and vari-
ous ambient parameters such as temperature, light and mo-
tion. Our work highlighted the new challenges seen in the In-
dian settings, such as: frequent outages lasting up to 9 hours
a day, voltage fluctuations upto 10 times more than that in
the US, upto 25% internet packet drop in a day, heavy dom-
inance of HVAC and fridges in overall energy (upto 50%).
Our work also verified challenges in residential deployments
discussed previously in the literature.



Figure 1: Home deployment schematic
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Figure 2: NILMTK provides a complete pipeline
from data sets to accuracy metrics

1.3 NILMTK
Challenges in dense residential deployments severely limit
scaling up potential applications requiring appliance energy
data. NILM is considered a viable alternative. However,
despite more than 3 decades of research in NILM, it re-
mained virtually impossible to empirically compare di↵er-
ent algorithms, due to: i) di↵erent data sets used, ii) the
lack of reference implementations of these algorithms, and
iii) the variety of accuracy metrics employed. To address
these challenges, we implemented the open source NILM
toolkit (NILMTK), designed specifically to enable the com-
parison of NILM algorithms [3]. NILMTK provides a com-
plete pipeline from data sets to accuracy metrics (Figure 2),
lowering the entry barrier for researchers to implement a new
algorithm. The initial version of NILMTK provided 2 bench-
mark NILM algorithms (combinatorial optimisation (CO)
and factorial hidden Markov model (FHMM)) and data set
parsers for 6 data sets. More recently, NILMTK underwent
a major rewrite allowing out-of-core operations [6] and in-
cluded the seminal NILM algorithm (Hart’s) and additional
data sets contributed by the data set authors. The success
of any such endeavour is measured by the community uptake
which is evidenced by recent works which use NILMTK [7,
1, 8, 5].

1.4 New metrics to evaluate NILM
While NILMTK now enables comparison of NILM algo-
rithms across multiple data sets, two fundamental questions
remain in NILM research: can these NILM techniques actu-
ally save energy and, if so, whether higher accuracy trans-
lates into higher energy savings. Having earlier established
that appliance power traces can provide specific actionable
feedback, we next evaluated the feedback produced by NILM
algorithms. We applied benchmark NILM algorithms pro-
vided in NILMTK and found them to give results compara-
ble to the state-of-art on traditional NILM metrics. How-
ever, Figure 3 and 4 show that on the metrics we care about,
i.e. accuracy of feedback, NILM approaches fare poorly.
These results indicate a need to revisit the metrics by which
disaggregation is evaluated.

2. FUTURE WORK (CLOSING THE LOOP)
Our future work spans three directions: 1) evaluate use cases
where disaggregation brings in a direct value by allowing
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Figure 3: NILM algorithms show poor accuracy
in identifying homes which need feedback for high
fridge usage energy. Red dots indicate the homes
which should be getting feedback based on analysis
of submetered fridge data, while these algorithms
would give feedback to all homes in the green re-
gion outside the elliptical boundary.
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Figure 4: Classification of homes into those with
setback schedules decreases from 84% with subme-
tered power traces to 53%, 69%, and 62% respec-
tively with power traces produced by the 3 NILM
algorithms.

actionable feedback, e.g. energy apportionment; 2) improve
the accuracy of existing NILM methods in context of the
feedback methods we have already proposed ; and 3) evalu-
ate these feedback methods in the wild through user studies,
to understand the real world energy e�ciency gains and sus-
tenance of NILM based feedback.
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