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Abstract

Air pollution is a global problem and severely impacts human
health. Fine-grained air quality (AQ) monitoring is important
in mitigating air pollution. However, existing AQ station de-
ployments are sparse. Conventional interpolation techniques
fail to learn the complex AQ phenomena. Physics-based mod-
els require domain knowledge and pollution source data for
AQ modeling. In this work, we propose a Gaussian processes
based approach for estimating AQ. The important features of
our approach are: a) a non-stationary (NS) kernel to allow
input depended smoothness of fit; b) a Hamming distance-
based kernel for categorical features; and c) a locally periodic
kernel to capture temporal periodicity. We leverage batch-
wise training to scale our approach to a large amount of data.
Our approach outperforms the conventional baselines and a
state-of-the-art neural attention-based approach.

Introduction
Today, 91% of the global population lives under unsafe lev-
els of AQ (WHO 2021). Long-term exposure to PM2.5 in-
creases cardiopulmonary mortality by 6–13% per 10 µg/m3

of PM2.5, which causes yearly 8 million deaths worldwide
(Kloog et al. 2013). Air quality (AQ) is affected by mul-
tiple factors, including but not limited to physicochemical
processes, meteorological variables, and the geography of
a place. Primary air pollution sources are solid fuels used
in domestic cooking, industrial plants, vehicular emissions,
roadside dust, and construction activities (Balakrishnan et al.
2019). Thus, air pollution is a complex spatio-temporal phe-
nomenon, and fine-grained AQ monitoring is essential to
make informed decisions towards air pollution mitigation.

Nations across the globe have sparse and non-uniform
AQ station deployments. Existing techniques to generate AQ
maps rely on interpolation approaches like Kriging, Spline,
and Trend. Some recent approaches have taken a data-driven
approach using deep learning to generate AQ maps (Cheng
et al. 2018; Xu and Zhu 2016; Zheng, Liu, and Hsieh 2013).
These methods: i) do not quantify uncertainty which may
help policymakers make informed decisions; and ii) do not
incorporate domain knowledge in modeling.
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Gaussian processes (GPs) are non-parametric Bayesian
models often used in environment modeling (Sampson and
Guttorp 1992) (aka Kriging (Krige 1951)). GPs implicitly
provide uncertainty estimates along with predictions that can
be useful for policymakers. The key component of GPs is
covariance functions (aka kernels), which govern the charac-
teristics of resultant fit on the data. Based on domain knowl-
edge, the covariance functions can be combined to approxi-
mate underlying phenomena efficiently.

Widely used GP packages (Gardner et al. 2018; GPy
since 2012) use a single length scale (a parameter govern-
ing smoothness of fit) for multiple features by default. In
practice, features have a diverse relationship with observa-
tions, including variable or negligible prediction power. To
neglect non-useful features and have better predictions with
useful features, we use the ARD (Automatic Relevance De-
termination), enabling GPs to learn the length scale parame-
ter individually for each feature.

Often, restrictive assumptions are made in GPs such as
stationarity (Guizilini and Ramos 2015). Stationarity means
that the covariance between two locations depends only on
the Euclidean distance between them. For AQ, it is possible
to have variable covariance for the same distance apart loca-
tions due to geographical heterogeneity and complex chem-
ical reactions. To address this challenge, we utilize an ap-
proach given by (Plagemann, Kersting, and Burgard 2008) to
induce non-stationarity by allowing input-depended smooth-
ness in model fit. Our dataset contains categorical features
such as wind direction (West, East,..), which are difficult to
model because standard kernels are designed for continu-
ous features. To address this problem, we use a Hamming
distance-based kernel (Hutter et al. 2014) that is well suited
for categorical features. Environmental processes often are
periodic over time. Air pollution may have periodicity due
to specific reasons such as: i) diurnal patterns of traffic; ii)
yearly patterns of seasons and periodic nature of other me-
teorological features that affect AQ. We utilize periodic ker-
nels combined with other kernels to encode this information.

We use the hourly AQ and meteorological data from Bei-
jing (Cheng et al. 2018) and London over a month to eval-
uate our approaches. We compare our approach against: i)
conventional spatial interpolation baselines such as Inverse
Distance Weighting, K-Nearest Neighbors; ii) standard ma-
chine learning models such as XGBoost and Random For-



est; and iii) a state-of-the-art neural attention based model
ADAIN (Cheng et al. 2018). Our approach outperforms the
baselines for both datasets in a cross-validation setting. We
analyze the effects of using various proposed techniques and
point out the strengths and weaknesses of each method.

We believe that our approach will make uncertainty-aware
fine-grained AQ inference accurate and help policymakers
make informed decisions to reduce air pollution. Our work
is fully reproducible, and the code, data, and appendix are
hosted at https://github.com/patel-zeel/AAAI22.

Related Work
We now discuss the related work across: i) Dispersion mod-
els; ii) forecasting; and iii) spatio-temporal inference.

Dispersion Models
Dispersion models are used to model AQ by mathematically
approximating the physicochemical processes governing air
pollution dynamics. Widely used dispersion models include
Gaussian plumes, Street canyon models (Fallah-Shorshani,
Shekarrizfard, and Hatzopoulou 2017) and computational
fluid dynamics. These methods model AQ as a function of
meteorology, traffic volume, and emission factors based on
several empirical assumptions. These models require deep
domain expertise and it is non-trivial to collect and update
the required data. In our approach, we instead use publicly
available and easily measurable data.

AQ Forecasting
AQ forecasting is a problem where a model predicts AQ t
timestamps ahead in the future, leveraging available infor-
mation till the current time. It is a well-explored problem
due to the rise of neural network-based time-series model-
ing. Recently, (Luo et al. 2019) proposed a KDD-18 cup
winning solution for AQ forecasting. The authors use a novel
combination of LightGBM, Gated-DNN, and Seq2Seq mod-
els. Recent work (Yi et al. 2018) proposed a deep distributed
fusion network-based method to forecast AQ on a large scale
(300+ Chinese cities). Earlier work (Zheng et al. 2015) used
a combination of linear regression for temporal dimension
and neural network-based spatial predictor. We aim to solve
a related but different problem to infer AQ at unmonitored
locations at a given timestamp instead of forecasting in the
future at the monitored locations.

AQ Inference
AQ inference is a problem of modeling AQ as a function
of several features (meteorology, traffic, and other features).
Previous work (Zheng, Liu, and Hsieh 2013) proposed a co-
training based method on top of a neural network and linear-
chain conditional random field (CRF) method for AQ infer-
ence. The authors perform classification based on standard
ranges of AQ levels decided by the United States Environ-
mental Protection Agency. The authors have used meteoro-
logical features, POIs (Points of Interests), road networks,
traffic-related features, and mobility features. We use fewer

features due to public data availability and focus on the re-
gression task instead of classification. Recent state-of-the-
art work (Cheng et al. 2018) proposes a neural attention-
based approach to incorporate time-invariant and time-series
features together. They also learn the effect of individual
train stations on a test location via an attention net. We use
similar features as the authors except road networks and
POIs due to the unavailability of data.

Problem Statement
Given a set of AQ monitors S, timestamps T , features (lati-
tude, longitude, temperature, humidity, weather, wind speed
and wind direction) and corresponding PM2.5 observations,
the aim is to predict PM2.5 at a new set of locations S∗ for
the same T timestamps.

Our Approach
We desire to have two main characteristics in AQ modeling:
i) uncertainty along with AQ predictions and ii) incorporat-
ing domain-inspired information into the model. We propose
Gaussian processes (GPs) based models which can implic-
itly provide uncertainty and incorporate domain-specific in-
formation via an appropriate kernel design. We first intro-
duce the basics of GPs, then we discuss limitations of stan-
dard GPs and ways to overcome them with non-stationary
GPs. Furthermore, we discuss feature-specific kernel design,
and finally, batch training of GPs for scalability.

Stationary GPs
GPs assume a prior distribution of functions over the PM2.5

observations y.

f(x) ∼ GPy(m(x), k(x,x′)) (1)

y = f(x) + ϵ, ϵ ∼ N (0, σ2) (2)

where, x ∈ Rd is a feature vector, y ∈ R is observation, and
ϵ is noise in observations with variance σ2. m(x) : Rd → R
is the prior mean function and k(x,x′) : Rd×Rd → R is the
prior covariance function. In practice, we assume constant
mean function without loss of generality. A well-known co-
variance function (kernel) is Radial Basis Function.

kRBF (x,x
′) = σ2

f exp

(−||x− x′||22
2ℓ2

)
(3)

Where σ2
f is kernel variance and ℓ is length scale. In the

current setting, θ = ⟨σf , σ, ℓ⟩ are the model hyperparam-
eters. GP hyperparameters are learned during the training
process. The negative log marginal likelihood L(θ) is mini-
mized with respect to training data points (Xn,yn) to opti-
mize the hyperparameters.

L(θ) = 1

2

[
yTK−1

y y + log |Ky|+ n log(2π)
]

(4)

Where Ky = k(Xn, Xn)+σ2In. Post training, predictive
distribution of observations for test points Xt is given as

f∗ ∼ N (K∗TK−1
y y,K∗∗ −K∗TK−1

y K∗) (5)

where K∗ is n× t covariance matrix between train and test
points and K∗∗ is t× t covariance matrix among test points.
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Figure 1: Interpolated empirical covariance between a target
station (S1) and all other stations in Beijing dataset. Two
locations (S∗

1 and S∗
2 ) with the same distance away from

S1 have significantly different covariance. Thus, stationary
kernels may fail to capture such a phenomenon. We may
need a non-stationary kernel for such scenarios.

Non-Stationary GPs (NSGP)
Environmental processes, in general, are highly dynamic in
nature depending on other environmental variables, the ge-
ography of a place and various other factors. For example,
temperature differences at a small distance apart would be
much higher in the hilly area than in a plain area.

We visualize the empirical covariance between a target
AQ station (S1) and all other stations from Beijing dataset
in Figure 1 to investigate the need for non-stationarity in our
model. Empirical covariance was generated by computing
covariance cov(S1,Si), 1 < i < |S| from corresponding
PM2.5 values along the temporal dimension. We interpolated
these covariance values with kriging (spherical variogram)
to generate a fine-grained map. If we focus on a target sta-
tion S1 and two locations in space S∗

1 and S∗
2 , notice that

cov(S1,S∗
1 ) is significantly different from cov(S1,S∗

2 ) de-
spite S∗

1 and S∗
2 are same distance apart from S1.

Thus, the underlying covariance structure is hard to model
efficiently with stationary kernels of the form k(x,x′) =
k(0,x−x′). Or, the covariance between two inputs depends
only on the distance between the two inputs and not on their
absolute values. RBF kernel in Eq. 3 is a stationary ker-
nel. To model a complex phenomena, we may need a non-
stationary kernel where the covariance evaluated at x and x′

given as: k(x,x′) may be unequal to k(x+∆x,x′ +∆x).
There are multiple ways of inducing non-stationarity in

GPs. In this paper, we study non-stationarity based on length
scales. We first quickly study the effect of length scales on
model fit (functions generated from a GP).

Length scale parameter in most kernels governs the
smoothness of functions drawn from the distribution. Fig-
ure 2 shows the effect of length scale on functions drawn
from a GP prior. Large length scales imply more smoothness
in functions. In reality, a function may have variable smooth-
ness as shown by the curve corresponding to LS(x) = 0.2x.
In such cases, it might be better to model the length scale
as a function of input. Now, we formally introduce a non-
stationary kernel known as Gibbs kernel.

Stationary kernels can be transformed to a non-stationary
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Figure 2: A larger length scale allows more smoothness in
a drawn function. We also show a sample function corre-
sponding to variable length scale uniformly varying from
0.01 to 2. Stationary GPs may underfit (have high bias) if
dataset has such a distribution.

kernel with Gibbs kernel (Paciorek and Schervish 2003):

kNS(x, x
′) =

√
2ℓℓ′

ℓ2 + ℓ′2
kS(x, x

′) (6)

Where kNS is a non-stationary kernel built on a station-
ary kernel kS . Note that for a stationary kernel in Eq. 3, we
had a single length scale parameter ℓ for all inputs. In kNS ,
we have a separate ℓ associated with each input x. While
plugging a stationary kernel kS in Eq. 6, we need to replace
ℓ2 with (ℓ2 + ℓ′2)/2. This formulation is only possible if
we can compute ℓ at any arbitrary data point x. Assuming
smooth variation in length scales, we can use another GP to
model this smoothness. However, learning length scales at
all the input points may become computationally expensive.

Thus, (Plagemann, Kersting, and Burgard 2008) propose
to learn ℓm at a set of inducing points xT

m,m << n and
compute ℓ at any input location x with posterior distribution
p
(
ℓ|X, ℓ,xT

m

)
. The second level GP (length scale GP) for

the length scale process is formulated as:

fℓ(x) ∼ GPℓ(mℓ(x), kℓ(x, x
′)) (7)

ℓ = f(x) + ϵℓ, ϵℓ ∼ N (0, σ2) (8)

where, prior ml(x) is constant 0 function and kl(x, x
′) can

be any suitable kernel for the length scale modeling.
The hyperparameters of both GPs can be tuned by maxi-

mizing log of a-posteriority probability log p(ℓ|X,y) of la-
tent length scales. In interest of space, we provide the equa-
tions of objective function (Plagemann, Kersting, and Bur-
gard 2008) while leaving the derivations to the appendix.

log p(ℓ|xT , ℓ) = −1

2

[
log |K∗∗ −K

∗TK
−1

ℓ K
∗|+ c

]
(9)

log p(y|X, ℓ) =
−1

2

[
yTK−1

y y + log |Ky|+ c
]

(10)

log p(ℓ|X,y) = log p(y|X, ℓ) +

d∑
j=1

log p(ℓj |xT
j , ℓj)

(11)

Where, Kℓ = Kfℓ+σ2Im is m×m noisy covariance ma-
trix from GPℓ computed among xT . Similarly, K

∗
is m×n

covariance matrix between inducing points and train points



and K
∗∗

is n×n covariance matrix among train points. Eq. 6
to Eq. 9 are defined for one-dimensional data points because
we have a separate GPℓ for each feature. Finally, for multi-
dimensional data with d features, we can optimize combined
hyperparameters with Eq. 11. We use K-Means clustering
separately on jth feature with mj number of clusters and
choose the cluster centers as inducing points.

ARD (Automatic Relevance Determination)
AQ datasets contain numerous types of features which may
require a separate treatment based on their range. GPs al-
low learning separate length scales for individual features
with ARD functionality (automatic relevance determina-
tion). ARD is helpful in automatically choosing the useful
features and ignoring non-informative features by setting the
corresponding length scale values too high or too low during
the optimization (Rasmussen and Williams 2005).

Hamming Distance Based Kernel for Categorical
Features
We have a set of categorical features present in our dataset
(wind direction and weather). Such features are often trans-
formed by one-hot-encoding before training machine learn-
ing models. For GPs, widely used kernels such as RBF are
not directly applicable to one-hot-encoded features due to
the binary nature of features. Because RBF and similar ker-
nels are designed to encode distance-based smoothness, but
we do not have a continuous feature space to make RBF
kernel effective for categorical features. Thus, we utilize a
Hamming distance-based kernel (Hutter et al. 2014), which
returns maximum correlation when categories are the same
and returns a lower correlation regulated by length scale l.

kcat(x, x
′) = exp

(
− Ix ̸=x′

2ℓ2

)
(12)

This kernel avoids high dimensional feature space gener-
ated by one-hot-encoding, which may significantly affect the
computational resources required during the training.

Local Periodic Kernel for Temporal Feature
Most environmental phenomena are periodic in the tempo-
ral dimension. Air pollution also exhibits periodic behavior
due to the nature of its sources and predictors. For exam-
ple, traffic has diurnal patterns, and meteorological variables
have daily and seasonal patterns. However, an exact period-
icity may not be exist in practice, but it may vary smoothly
in the space. This phenomenon is known as local periodic-
ity (Duvenaud 2014). In GPs, the multiplication of two ker-
nels incorporates the abilities of both kernels. Thus, we use
the RBF kernel to incorporate smoothness in the period and
the Periodic kernel to model the period in the dataset. Multi-
plication of these kernels is known as Local Periodic kernel

kPeriodic(x, x
′) = exp

(
−2 sin2(π|x− x′|/σp)

ℓ2

)
(13)

kLocalPer(x, x
′) = kPeriodic(x, x

′) ◦ kRBF (x, x
′) (14)

Where, σp is the period learned by the periodic kernel.

Final Model
The final kernel is of the following form:

K = σ2
f ◦KMatern/RBF ◦Kcat ◦KLocalPer (15)

Where, KMatern/RBF ,Kcat and KLocalPer are kernels
computed with continuous, categorical, and temporal fea-
tures, respectively. We now show the process of training and
inference with our model.
Initialization Given the training data ⟨X,y⟩, fix the induc-
ing points xT

j for jth feature with any suitable heuristics. We
use K-Means clustering separately on jth feature with mj

number of clusters and choose the cluster centers as induc-
ing points. Initialize ℓj for each j ∈ {1, 2, ..., d}. Initialize
kernel hyperparameters for GPℓ and GPy .
Training For each iteration of training, we would execute
the following steps: 1) Evaluate ℓj at xT

j as predictive mean
of corresponding GPℓ using xT

j for each j ∈ {1, 2, ..., d}; 2)
Calculate loss (Eq. 11) after evaluating required covariance
matrices from GPℓ and GPy; 3) Jointly update GPℓ, GPy

kernel hyperparameters and ℓj for each j ∈ {1, 2, ..., d}.
Prediction/Inference Evaluate ℓ∗j at x∗T

j as predictive
mean of corresponding GPℓ using xT

j for each j ∈
{1, 2, ..., d} and use standard GP posterior equations to get
the posterior distribution of PM2.5 values at X∗.

Scalable Batch Training
GP training involves evaluating marginal likelihood in each
iteration which takes O(tn3) time for n data points and t
iterations. Additionally, we need O(n2) memory to store
the covariance matrix. We have nearly 14K data points from
just a month’s data, and thus we need scalability. Recently,
stochastic gradient descent on GPs has been proven as an
effective method for large datasets (Chen et al. 2020). Thus,
we use batch-wise training to train non-stationary versions
of our model on multiple batches of data. We were able to
run the stationary version of the model without batched set-
ting, and thus we used full data for it. There are multiple
ways of sampling batches from the entire dataset. We ex-
plore the following batching schemes in our approach: 1)
We sample the data points uniformly from the full data; 2)
We sample a random data point and choose b points close
to that point as a batch. We use Euclidean distance to deter-
mine the close points; 3) We equally split our data along the
temporal dimension. In our case, we split one month’s data
into four parts, considering a week’s data as a batch. Note
that if we assume constant batch size in this setting, mem-
ory requirement stays constant, and compute time increases
linearly with an increase in the dataset size.

Evaluation
Datasets
We have used openly available datasets for Beijing, China
and London, UK in this work. We now describe the further
details and preprocessing for each of the datasets.



Methods Missing
Data Lin. Quad. Cub. data

PM2.5 16.69 18.29 18.66 3%
Temperature (T) 1.24 1.39 1.43 14%
Humidity (H) 7.57 9.21 9.49 13%
Wind speed (WS) 3.32 4.29 4.50 13%

Weather (W) Nearest Time-stamp 15%
Wind dir. (WD) Nearest Time-stamp 14%

Table 1: All stations in Beijing dataset have a few missing
meteorological and PM2.5 values. To choose the best method
for data filling in the temporal dimension, we use five-fold
cross-validation with non-missing data. We use the method
yielding least RMSE (Linear interpolation) to fill in the
missing values. We apply the same methodology for Lon-
don dataset. Lin. is Linear interpolation, Quad. is Quadratic
spline, and Cub. is Cubic spline. Wind dir. is wind direction.

Beijing dataset We use the hourly PM2.5 data from 36 sta-
tions in Beijing and meteorological data (temperature, hu-
midity, pressure, wind speed, wind direction and weather)
from the stations in the same district (Cheng et al. 2018;
Zheng et al. 2015). Among these features, wind direction
and weather are categorical and others are continuous fea-
tures. Wind direction contains 10 categories (including 4
cardinal, 4 ordinal directions along with unstable and no di-
rection). Weather has 17 categories, including but not lim-
ited to rainy, foggy, sunny and dusty. The duration of the
dataset is one year (2014-05-01 to 2015-04-30). The dataset
is publicly available via the following website (Microsoft
2021). We note that the source papers of this dataset also use
other features to model AQ such as POIs (points of interest)
and road networks (total length of roads around a station),
which are not publicly available and thus not used in our
work. We observe a large amount of missing data in different
stations at different time intervals. To enable the comparison
with state-of-the-art neural baseline (Cheng et al. 2018), we
chose a particular month (March 2015) having the minimum
amount of missing data. We carry out a dataset preprocess-
ing step to handle further issues with the dataset, such as
missing values and anomalies.

To address the missing entries in the dataset, we remove
the stations having a substantial amount of missing values.
50% of stations from the dataset has at least 60% missing
values for the pressure feature. Thus, we drop pressure from
our meteorological variables. Also, five stations (station IDs:
1009, 1013, 1015, 1020, 1021) each have merely 35% of
the weather data, so we drop these five stations from our
experiments. In the remaining data, we have at least 85%
data available for all variables as shown in Table 1. To fill in
the missing data for real-valued variables ( PM2.5, temp, hu-
midity, and wind speed), we interpolate in time. We choose
the best method among these with cross-validation on non-
missing data. In previous literature, we either do not find
missing data handling details or find trivial methods such
as nearest timestamp filling for all variables (Cheng et al.
2018). Thus, our methodology provides a data-driven, sys-

tematic approach to data filling. Table 1 shows the least
RMSE values on five-fold cross-validation for each of the
interpolation methods applied on each feature. We choose
the nearest timestamp value to fill the missing data coming
from categorical features (wind direction and weather).

London dataset We use the London AQ dataset provided
in KDD Cup 2018 challenge. The dataset includes PM2.5

observations from 24 stations along with spatial locations of
the stations and grid-wise (0.1 × 0.1) meteorological data.
We take a distance-based weighted average of the nearest
four grid points to merge meteorological data with AQ data.
We choose a month (May 2017) with the least amount of
missing entries in AQ data and drop 2 (‘HR1’, ‘KF1’) out
of 24 stations having most of the missing entries. Our final
dataset has 1.5% missing data. We follow similar steps as
the Beijing dataset to fill in the missing values.

Baselines
We compare our work against the state-of-the-art neural at-
tention architecture (Cheng et al. 2018) and baselines used
in previous literature. Note that we baselined against other
regression methods like: support vector regression, linear re-
gression, and decision trees but do not include them here as
the results were comparable or poorer than the mentioned
baselines and due to space limits.

Random Forest Random Forest is widely used and known
to perform efficiently on the non-linear regression tasks
(Fawagreh, Gaber, and Elyan 2014). It uses an ensemble of
multiple decision trees for regression such that the final out-
put is the mean of the outputs from all trees.

Inverse Distance Weighting Inverse Data Weighting
(IDW) (Lu, George Y., and David W. Wong 2008) is an in-
terpolation technique that estimates the value of an unknown
point by taking the weighted average of the known points. It
is a commonly used method in spatial interpolation litera-
ture (Ikechukwu et al. 2017).

XGBoost XGBoost improves by iteratively combining the
results from weak estimators. The algorithm uses gradient
descent while adding new trees while training.

K-Nearest Neighbors (KNN) Regression KNN uses
“feature similarity” to obtain the K nearest neighbors to
a test point and averages their observations to estimate the
value at the test point.

ADAIN We use the ADAIN model (Cheng et al. 2018)
which is a neural network based approach to infer the AQ at
a a local station using the data from available stations. The
model uses both time-invariant and time-series data in linear
and recurrent neural network layers. The importance of train
stations in determining the AQ of a test location is dynami-
cally computed by an attention layer. The final prediction is
the weighted average of observations from the train stations
where weights are attention weights. We would like to clar-
ify that while the code for the ADAIN paper is not publicly
available, we implemented ADAIN by discussing it with the
original authors.



We use RF, XGBoost, and KNN implementation from the
scikit-learn (Pedregosa et al. 2011) library and IDW from
the Polire (Narayanan et al. 2020) library.

Evaluation Metrics
We use the root mean squared error (RMSE), mean abslute
error (MAE) and R2 as widely-used metrics in regression
problems. We also use the following metrics specifically for
the GP models: i) CE: Coverage Error (CE) is a useful met-
ric for evaluating probabilistic models (Hatalis et al. 2017).
CE is calculated as the absolute difference between x and the
number of samples falling within the x% confidence inter-
val. We report CE for 95% confidence interval; ii) MSLL:
Mean Standardized Log Loss (MSLL) is an average of log
pdf over all the test points considering the predictive distri-
bution (Rasmussen and Williams 2005).

Experimental Setup
We now discuss the settings and data preparation done for
each method.

Cross-validation Our experimental setup is similar to pre-
vious literature (Cheng et al. 2018). We consider an offline
learning setting where we train a single model on the whole
dataset leveraging the meteorological features and observa-
tions from the train stations. IDW and KNN are exceptions
here as they can handle spatial features only, and thus we
train and test separate models for each timestamp. We per-
form the 3-fold and 4-fold outer cross-validation for the Bei-
jing dataset and London dataset, respectively, where each
fold is split by a set of train and test AQ stations.

Hyperparameter tuning For hyperparameter tuning on
non-GP based baselines, we carry out grid search for 5 in-
ner folds on the training data. We use the ‘GridSearchCV’
routine from scikit-learn (Pedregosa et al. 2011) to perform
the hyperparameter tuning. For Random Forest, we varied n-
estimators in the set {100, 500, 1000} and the max-depth in
{10, 50, 100, infinity}. The value of exponent in IDW was
varied for values ∈ {0.5, 1, 2, 3, 4, 5, 6} in order to get the
best fit. For XGBoost, n-estimators was chosen among the
set{100, 500, 1000} and the learning-rate from {0.01, 0.05,
0.1}. The grid of n-neighbors in KNN contained the values
{2, 3, 5, 7}. The final values of hyperparameters after tuning
are mentioned in Section .

Data preperation For distance-based models (IDW and
KNN), each feature dimension is scaled between 0 to 1. For
the ADAIN model, we follow the data preparation as de-
scribed by (Cheng et al. 2018). The input data to ADAIN
is scaled using robust scaling (dataset is scaled so that the
inter-quartile range is scaled between 0 to 1 to reduce the
effect of outliers on the scaling) on all continuous features.

We perform stationary GP regression over each dataset
fold, experimenting with different kernel functions. We
choose the kernel that yields the best training loss (in GP,
best log marginal likelihood). Note that log marginal like-
lihood can be used as a model selection strategy here, as
shown by (Fong and Holmes 2020). Due to numerical issues

Model RMS MAE R2 CE (95%) MSLL

RF 26.68 15.59 0.87 - -
IDW 48.09 34.79 0.87 - -
XGB 33.85 23.94 0.87 - -
KNN 37.99 24.80 0.87 - -
ADAIN 29.39 18.83 0.56 - -

ĀN̄C̄L̄ 37.95 26.66 0.74 0.73 49.04
AN̄C̄L̄ 25.04 15.81 0.89 0.58 29.40
AN̄CL̄ 24.02 15.03 0.90 0.57 27.87
AN̄CL 24.28 15.23 0.89 0.55 24.68
ANCL̄ 26.07 18.97 0.85 0.37 9.97
ANCL 24.71 15.77 0.89 0.34 8.07

Table 2: Comparison of metrics among all baselines and
our approach (combinations of various settings) on Bei-
jing dataset. Our approach outperforms all the baselines, in-
cluding a state-of-the-art neural attention method (ADAIN).
A,N,C,L configuration is explained in Sectin . The bold
row shows the best approach based on minimum negative
log marginal likelihood. The italic row shows the approach
performing best on the test dataset. We can observe that
these two versions have comparable results on the test data.
According to probabilistic metrics (CE and MSLL), ANCL
is yielding the best results among all other variants.

and non-convexity of log marginal likelihood, hyperparame-
ter initialization plays a significant role in GP regression, as
pointed out by (Basak et al. 2021). To combat this, we use 5
random restarts of initializing hyperparameters by the stan-
dard normal distribution, allowing the model to converge
at the global optima potentially. We use BoTorch (Balandat
et al. 2020) implementation of stationary GPs.

Our Model configuration A: ARD is enabled, N : non-
stationary kernel is used, C : categorical kernel is used for
categorical features and L : Locally periodic kernel is used
for time feature, Ā : Non-ARD version, N̄ : Stationary ker-
nel, C̄ : one-hot-encoded categorical features without Ham-
ming distance kernel, L̄ : RBF/Matern kernel for time fea-
ture. We choose the best model with minimum negative log
marginal likelihood (NLML).

Results and Analysis
Our main results in Table 2 and Table 3 show that our
approach under the AN̄CL configuration (shown in bold
numbers) significantly improves over all the other baselines
in terms of conventional metrics (RMSE and MAE). We se-
lected the best configuration based on the lowest value of
negative log marginal likelihood (NLML) across all the GP
based methods. The best performing approach configura-
tion on the test set (shown in italics) is the AN̄CL̄ whose
RMSE is comparable to the best configuration chosen as per
the (NLML). We note that as per the probabilistic metrics
(CE and MSLL), our approach with all extensions turned on
(ANCL) is performing the best on both Beijing and Lon-
don datasets. Best hyperparameters for baselines are pro-
vided in the appendix available in our repository.



Model RMS MAE R2 CE (95%) MSLL

RF 4.69 3.06 0.87 - -
IDW 8.01 5.50 0.87 - -
XGB 4.90 3.44 0.87 - -
KNN 4.75 3.20 0.87 - -
ADAIN 4.78 3.36 0.56 - -

ĀN̄C̄L̄ 4.86 3.33 0.66 0.06 3.15
AN̄C̄L̄ 4.64 3.19 0.69 0.06 3.10
AN̄C̄L 4.65 3.20 0.68 0.07 3.12
ANCL̄ 5.51 3.85 0.56 0.01 3.07
ANCL 4.90 3.23 0.65 0.02 2.95

Table 3: Comparison of metrics among all baselines and our
approach on London dataset. Our approach outperforms all
the baselines. ANCL approach outperforms all other vari-
ants according to the probabilistic metrics (CE and MSLL)
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Figure 3: Predicted PM2.5 Concentration comparison be-
tween a) our approach (AN̄CL), b) XGBoost, and c) Ran-
dom Forest model for a particular test station in Beijing data.

Figure 3 shows the comparison of predictions from our
AN̄CL with the XGBoost and the Random Forest baselines
on the Beijing dataset. Our model can capture the nuances
of the dataset better than the baselines.

To interpret the ARD enabled model, we plot Non-ARD
length scale with ARD length scales for each feature in Fig-
ure 4 with best model: AN̄CL. The magnitude of the length
scale gives insights into the smoothness of observations in a
particular feature space. For example, PM2.5 varies slowly
with wind speed but varies rapidly with latitude. If these dif-
ferent relationships did not exist, we would have learned the
same length scale across all the features.

In the training of Non-stationary GP, we explored multi-
ple batching techniques on the Beijing dataset, as discussed
in Section . As per Table 4, Time-split batching yields the
best train loss and best test RMSE in our experiments. Note
that we have used the Time-split method as default in the
experiments presented in Table 2. Note that we have used
other batching sampling, and the results are comparable.
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Figure 4: Effect of ARD (automatic relevance determina-
tion) on length scales learned for different features. This re-
veals key information about the relationship between a fea-
ture and PM2.5. For example, PM2.5 is smoothly varying
with wind speed but varying quickly with latitude.

RMSE (Lower is better)
Method Fold-1 Fold-2 Fold-3 Mean

Uniform 27.63 26.97 25.67 26.76
Time split 25.35 27.83 25.47 26.22
Nearest Neigh. 24.48 28.11 27.48 26.69

Table 4: Effect of batching techniques on RMSE while train-
ing the non-stationary GPs on Beijing dataset. We observe
that while each method performs well in different folds, the
Time-split method has the overall best result.

Limitations and Future Work
We now discuss limitations and future work:
1. Larger data: We have only looked at a single month of

data for a single pollutant. This was done because some
of the baselines require large contiguous data chunks
(which are unavailable and inappropriate to fill like we
did in the current work). We plan to expand our dataset
both in time and the estimated pollutants in the future.

2. Other non-stationary methods: In the current paper, we
looked only at a single method (length-scale based) for
inducing non-stationary behaviour. In the future, we plan
to look at other similar techniques (Heinonen et al. 2016;
Wilson et al. 2016).

3. GP Scalability: In the current paper, we have looked at
SGD based methods for scaling GPs. In the future, we
propose to also study other sparse GP methods (Snelson
and Ghahramani 2006; Titsias 2009).

Conclusions
Accurate AQ estimation at unmonitored locations is an es-
sential step towards better policy and control of air pollution.
Existing approaches for estimating AQ are either white-box
and require extensive emission data or entirely data-driven,
like neural networks. In this work, we present Gaussian pro-
cesses based approach that can leverage domain insights
such as: i) periodicity in time; ii) the relative importance of
different features; iii) non-stationarity; and iv) encoding cat-
egorical features. Our approach is more accurate than state
of the art. The uncertainty estimates in our approach make it
more beneficial to the decision-makers.
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