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Multivariate Normal Distribution

PDF(θ,µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)

• θ is the vector of random variables (observation) for which

you want to calculate the PDF.

• k is the dimensionality of the random vector θ (number of

variables).

• Σ is the covariance matrix

• µ is the mean vector.
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Bivariate Normal Distribution

PDF(µ,Σ) =
1

2π|Σ|1/2
exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)

Slides heavily inspired from Richard Turner’s slides

2



Bivariate Normal Distribution

PDF(µ,Σ) =
1

2π|Σ|1/2
exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)

Slides heavily inspired from Richard Turner’s slides

2



Bivariate Normal Distribution

Notebook (visualise-normal.ipynb)
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Bivariate Normal Distribution

PDF (µ,Σ) ∝ exp

(
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2
(θ − µ)>Σ−1(θ − µ)

)
Σ =

[
1.0 0.0
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution

PDF (µ,Σ) ∝ exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)
Σ =

[
1.0 0.6

0.6 1.0

]

−3 −2 −1 0 1 2 3

θ0

−3

−2

−1

0

1

2

3
θ 1

8



Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bivariate Normal Distribution
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Bayesian Linear Regression



Linear Regression

θMLE =
(
X>X

)−1
X>y

For θMAP estimation, we assume a Gaussian prior

p(θ) = N
(
0, b2I

)
θMAP =

(
X>X +

σ2

b2
I
)−1

X>y

where X is the feature matrix, y is the corresponding ground truth

values and σ is the standard deviation of Gaussian distribution in

the MLE estimation.
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Linear Regression using Basis Functions
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Figure 1: Data

We can use basis functions to fit a non-linear function to the data.

For example we can use a polynomial basis function to fit a

polynomial to the data, where φj(x) = x j .
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MLE and MAP
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Figure 2: MLE and MAP
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Bayesian Linear Regression
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Figure 3: Bayesian linear regression
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Bayes Rule

P(θ|D) =
P(D|θ) · P(θ)

P(D)

• P(θ|D) is called the posterior

• P(D|θ) is called the likelihood

• P(θ) is called the prior

• P(D) is called the evidence
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Bayesian Linear Regression

xTi θ

yi

xi

θ

MVN

S0m0

N

σ

i = 1, · · · ,N
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Bayesian Linear Regression

In Bayesian linear regression, we consider the model:

prior : p(θ) = N (m0,S0)

with m0 and S0 as the mean and covariance matrix and

likelihood : p(y | x ,θ) = N
(
y | x>θ, σ2

)
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Bayes Rule

Given a training set of inputs xn ∈ RD and corresponding

observations yn ∈ R, n = 1, . . . ,N, we compute the posterior over

the parameters using Bayes’ theorem as

p(θ | X ,Y) =
p(Y | X ,θ)p(θ)

p(Y | X )

where X is the set of training inputs and Y the collection of

corresponding training targets.
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Posterior

We find the closed form solution of posterior p(θ | X to be a

normal distribution with mean mN and covariance matrix SN

p(θ | X ,Y) = N (θ | mN ,SN)

SN =
(
S−10 + σ−2X>X

)−1
mN = SN

(
S−10 m0 + σ−2X>y

)
where the subscript N indicates the size of the training set.
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Proof

Posterior : p(θ | X ,Y) =
p(Y | X ,θ)p(θ)

p(Y | X )

Likelihood : p(Y | X ,θ) = N
(
y | Xθ, σ2I

)

Prior : p(θ) = N (θ | m0,S0)
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Proof

The sum of the log-prior and the log-likelihood is

logN
(
y | Xθ, σ2I

)
+ logN (θ | m0,S0)

= −1

2

(
σ−2(y − Xθ)>(y − Xθ) + (θ −m0)> S−10 (θ −m0)

)
+ const
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We ignore the constant term independent of θ. We now factorize,

which yields

= −1

2

(
σ−2y>y − 2σ−2y>Xθ + θ>σ−2X>Xθ + θ>S−10 θ

−2m>0 S−10 θ + m>0 S−10 m0

)

=− 1

2

(
θ>
(
σ−2X>X + S−10

)
θ − 2

(
σ−2X>y + S−10 m0

)>
θ

)
+ const

23



We ignore the constant term independent of θ. We now factorize,

which yields

= −1

2

(
σ−2y>y − 2σ−2y>Xθ + θ>σ−2X>Xθ + θ>S−10 θ

−2m>0 S−10 θ + m>0 S−10 m0

)

=− 1

2

(
θ>
(
σ−2X>X + S−10

)
θ − 2

(
σ−2X>y + S−10 m0

)>
θ

)
+ const

23



We ignore the constant term independent of θ. We now factorize,

which yields

= −1

2

(
σ−2y>y − 2σ−2y>Xθ + θ>σ−2X>Xθ + θ>S−10 θ

−2m>0 S−10 θ + m>0 S−10 m0

)

=− 1

2

(
θ>
(
σ−2X>X + S−10

)
θ − 2

(
σ−2X>y + S−10 m0

)>
θ

)
+ const

23



Posterior

Now, we evaluate the posterior distribution,

p(θ | X ,Y) = exp(log p(θ | X ,Y)) ∝ exp(log p(Y | X ,θ)+log p(θ))

∝ exp

(
−1

2

(
θ>
(
σ−2X>X + S−10

)
θ − 2

(
σ−2X>y + S−10 m0

)>
θ

))
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Normalizing the posterior distribution

We now normalize this Gaussian distribution into the form that is

proportional to N (θ | mN ,SN), i.e., we need to identify the mean

mN and the covariance matrix SN .

To do this, we use the concept of completing the squares. The

desired log posterior is

logN (θ | mN ,SN) = −1

2
(θ −mN)> S−1N (θ −mN) + const

= −1

2

(
θ>S−1N θ − 2m>NS−1N θ + m>NS−1N mN

)
.
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Normalizing the posterior distribution

We factorize the quadratic form (θ −mN)> S−1N (θ −mN) into a

term that is quadratic in θ alone, a term that is linear in θ, and a

constant term. This allows us now to find SN and mN by

matching the expressions, which yields

S−1N = X>σ−2IX + S−10

=⇒SN =
(
σ−2X>X + S−10

)−1
and

m>NS−1N =
(
σ−2X>y + S−10 m0

)>
=⇒mN = SN

(
σ−2X>y + S−10 m0

)
.
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Posterior Predictive Distribution

Goal: Find p (y∗ | X ,Y, x∗)

p(y∗ | X ,Y, x∗) =

∫
p(y∗ | x∗,θ)p(θ | X ,Y)dθ

=

∫
N (y∗ | x>∗ θ, σ2)N (θ | mN ,SN)dθ

= N (y∗ | x>∗ mN , x>∗ SNx∗ + σ2)

Two kinds of uncertainty:

• Aleatoric uncertainty: Uncertainty in the data - given as σ2

• Epistemic uncertainty: Uncertainty in the model - given as

x>∗ SNx∗
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Posterior Predictive Distribution

• TFP blog: Aleatoric v/s Epistemic Uncertainty

• MML book: Figure 9.4

28



Bayesian Updation

Bishop book: Figure 3.7
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