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The Data Compression Problem
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Figure 1: Data Compression Problem
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Self Information

• What is more surprising: Snowing in Kashmir or Snowing in

Gandhinagar?

• To formalize, let us assume that the probability of snowing in

Kashmir is p1 and that in Gandhinagar is p2, and that

p1 >> p2.

• How can we quantify the surprise?
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Self Information

• Events that are less likely to occur are more surprising.

• Also, if an event is 100% likely to occur, it is not surprising at

all.

• Also, if two events are independent, then the surprise of both

of them occurring together is the sum of the surprise of each

of them occurring individually.

• So, we need a function that maps probability to a number.

Function should be: monotonic, and additive, and is 0 when

the probability is 1.

• The function is I (x) = − log2(x) also called the self

information or surprisal.
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Self Information
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Figure 2: Self Information
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Self Information

Consider a categorical random variable X with 4 possible

outcomes: A, B, C, D. The probability of each of these outcomes

is 0.25. What is the self information of each of these outcomes?
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I (A) = I (B) = I (C ) = I (D) = 2 bits. 5



Self Information

Consider a categorical random variable X with 4 possible outcomes:

A, B, C, D. The probability these outcomes is 0.5, 0.25, 0.125, and

0.125. What is the self information of each of these outcomes?
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I (A) = 1 bit, I (B) = 2 bits, I (C ) = I (D) = 3 bits. 6



Self Information

Proof on additivity of self information: Consider two independent

random variables X and Y with PMFs pX (x) and pY (y)

respectively. The joint PMF is pX ,Y (x , y) = pX (x)pY (y). The self

information of the joint PMF is:

I (X = x ,Y = y) =− log2(pX (x)pY (y))

= − log2(pX (x))− log2(pY (y))

= I (X = x) + I (Y = y)
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Entropy

• The entropy of a random variable is the expected value of the

self information.

• H(X ) = EX∼p(x)[I (X )] = EX∼p(x)[− log2(p(x))]

• The entropy of a random variable is the expected number of

bits required to encode the random variable.

• The entropy of a random variable is the minimum number of

bits required to encode the random variable.
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Entropy

For a Bernoulli random variable X with probability p of success,

the entropy is:

H(X ) = EX∼p(x)[− log2(p(x))]

= − log2(p)× p − log2(1− p)× (1− p)

= −p log2(p)− (1− p) log2(1− p)

0.0 0.2 0.4 0.6 0.8 1.0

Probability (p)

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ro
py

(b
its

)

Figure 3: Entropy
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Entropy

For a k class categorical random variable X with probability pi of

class i , the entropy is:

H(X ) = EX∼p(x)[− log2(p(x))]

= −
k∑

i=1

pi log2(pi )
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Figure 4: Entropy
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Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the

probability of each of these symbols is 0.25. Let us assume we use

the following code to encode these symbols:

A→ 00

B → 01

C → 10

D → 11

What is the expected code length?

Expected code length = L(X ) =
∑4

i=1 pi × li = 2 bits.
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Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the

probability of these symbols is 0.5, 0.25, 0.125, and 0.125. Let us

assume we use the following code to encode these symbols:

A→ 00

B → 01

C → 10

D → 11

What is the expected code length?

Expected code length =
∑4

i=1 pi × li = 2 bits. But, is this the

most efficient code? No! What is the entropy of this random

variable? H(X ) = 1.75 bits.
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Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the

probability of these symbols is 0.5, 0.25, 0.125, and 0.125. Using

fixed length codes, we need 2 bits to encode each symbol.

Key idea: Use shorter codes for more frequent symbols and longer

codes for less frequent symbols.

How about the following code?

A→ 0

B → 10

C → 110

D → 111

Expected code length =
∑4

i=1 pi × li = 1.75 bits.
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Optimum Code Length

By definition, we saw that the entropy of a random variable is the

minimum number of bits required to encode the random variable.

This means that the expected code length of any code is always

greater than or equal to the entropy of the random variable.

Relationship between entropy and expected code length

L(X ) =
n∑

i=1

pi × li ≥ H(X ) (1)

Optimum length for each symbol is given by:

li = − log2(pi ) (2)
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Huffman Encoding

• Huffman encoding is a method to construct a variable length

code for a random variable.

• The code is constructed such that the expected code length is

equal to the entropy of the random variable.

• The code is constructed such that the code is a prefix code.
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Cross Entropy

Suppose we have four symbols A, B, C, D with probabilities 0.5,

0.25, 0.125, and 0.125 respectively. Let us call this distribution

p(x). We want to transmit some data using these symbols.

The optimum encoding scheme is: A: 0, B: 10, C: 110, D: 111.

But, for some reason, we believe that the four symbols are

distributed as per q(x): 0.25, 0.25, 0.25, and 0.25.

For this distribution, the optimum encoding scheme is: A: 00, B:

01, C: 10, D: 11.

16



Cross Entropy

Cross Entropy H(p, q)

The cross-entropy between two probability distributions p and

q over the same underlying set of events measures the aver-

age number of bits needed to identify an event drawn from

the set if a coding scheme used for the set is optimized for

an estimated probability distribution q, rather than the true

distribution p.
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Cross Entropy

Cross Entropy H(p, q): Optimum code length for transmitting

data distributed as per p via a code as per q =
∑4

i=1 pi × li .

lq(A) = lq(B) = lq(C ) = lq(D) = − log2(q(D)) = 2 bits.

H(p, q) = 2 bits.

Entropy H(p): Code length for transmitting data distributed as

per p via a code as per p =
∑4

i=1 pi × li = 1.75 bits.
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KL divergence

KL Divergence DKL(p||q)

The KL divergence between two probability distributions p

and q over the same underlying set of events measures the

difference in the average number of bits needed to identify

an event drawn from the set if a coding scheme used for the

set is optimized for an estimated probability distribution q,

rather than the true distribution p.

DKL(p||q) =
k∑

i=1

pi log2
pi
qi

=
k∑

i=1

pi log2 pi −
k∑

i=1

pi log2 qi

= H(p, q)− H(p)
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Example relating KL divergence and Cross Entropy

True probability distribution p: A: 0.4, B: 0.3, C: 0.2, D: 0.1

Estimated probability distribution q: A: 0.15, B: 0.55, C: 0.05, D:

0.25.

Entropy H(p) = 1.8464 bits.

Cross Entropy H(p, q) = 2.4179 bits.

Huffman code for p: A: 0, B: 10, C: 110, D: 111.

Huffman code for q: A: 10, B: 0, C: 110, D: 111.

Average code length for transmitting data distributed as per p via

code as per p is: 0.4*1 + 0.3*2 + 0.2*3 + 0.1*3 = 1.9 bits.

Average code length for transmitting data distributed as per p via

code as per q is: 0.4*2 + 0.3*1 + 0.2*3 + 0.1*3 = 2.2 bits.

DKL(p||q) = 2.4179− 1.8464 = 0.5714 bits.
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Relationship between KL divergence and Maximum Likelihood

Estimation

Let us assume we have a dataset D = {x1, x2, . . . , xn} for a two

class classification problem. Let us assume that the class labels are

y1, y2, . . . , yn.
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