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Topics

1. Markov Chains

2. Markov Chain Monte Carlo (MCMC)
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Main Goal

• We want to compute posterior predictive distribution (or

something similar)

• We would typically use Monte Carlo methods to do this.

• I =
∫
f (x)p(x)dx where p(x) is the posterior distribution.

• We can approximate I by 1
N

∑N
i=1 f (xi ), where xi ∼ p(x) are

drawn IID.

• Goal: sample from p(x), usually using unnormalized density

p̃(x)
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Limitations of basic sampling methods

• Transformation based methods: Usually limited to drawing

from standard distributions.

• Rejection and Importance sampling : Require selection of good

proposal distirbutions.

In high dimensions, usually most of the density p(x) is

concentrated within a tiny subspace of x . Moreover, those

subspaces are difficult to be known a priori.

A solution to these are Markov Chain Monte Carlo methods.
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Markov Chains



Properties of Markov Chain: Stationarity

Start
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Properties of Markov Chain: Stationarity

Let us consider the rainy-sunny example.

Table 1: Prior Probability (PI)

X0 = Sunny X0 = Rainy

PI 0.5 0.5

Table 2: Transition Matrix (A)

Xt+1

Sunny Rainy

Xt
Sunny 0.9 0.1

Rainy 0.2 0.8

What is the probability of it being sunny on day 0?

0.5
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Properties of Markov Chain: Stationarity

Let us consider the rainy-sunny example.

Table 5: Prior Probability (PI)

X0 = Sunny X0 = Rainy

PI 0.5 0.5

Table 6: Transition Matrix (A)

Xt+1

Sunny Rainy

Xt
Sunny 0.9 0.1

Rainy 0.2 0.8

• What is the probability of it being sunny/rainy on day 1?

• We can have two cases:
• X0 = Sunny: P(X1 = Sunny) = 0.9

• X0 = Rainy: P(X1 = Sunny) = 0.2

• P(X1 = Sunny) = 0.5× 0.9 + 0.5× 0.2 = 0.55

• P(X1 = Rainy) = 0.5× 0.1 + 0.5× 0.8 = 0.45
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Properties of Markov Chain: Stationarity

Let us consider the rainy-sunny example.

Table 7: Prior Probability (PI)

X0 = Sunny X0 = Rainy

PI 0.5 0.5

Table 8: Transition Matrix (A)

Xt+1

Sunny Rainy

Xt
Sunny 0.9 0.1

Rainy 0.2 0.8

• What is the probability of it being sunny/rainy on day 2?

• We can have two cases:

• P(X2 = Sunny) = 0.55× 0.9 + 0.45× 0.2 = 0.585

• P(X2 = Rainy) = 0.55× 0.1 + 0.45× 0.8 = 0.415
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Properties of Markov Chain: Stationarity

Let us consider the rainy-sunny example.

Table 9: Prior Probability (PI)

X0 = Sunny X0 = Rainy

PI 0.5 0.5

Table 10: Transition Matrix (A)

Xt+1

Sunny Rainy

Xt
Sunny 0.9 0.1

Rainy 0.2 0.8

• What is the probability of it being sunny/rainy on day T?

• We can use matrix power to compute this.

• Distribution of XT is given by π = πPOWER(A,T ).

• At T = 99 and T = 100, π = (0.67, 0.33).
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Properties of Markov Chain: Stationarity

Notebook: markov-chain.ipynb

Questions:

• Does the distribution of XT depend on initial distribution π?
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Properties of Markov Chain: Stationarity

We can define statationary distribution as follows:

• A distribution π is said to be stationary for a Markov chain

with transition matrix A if π = πA.

• For previous example,

• π = (π1, π2)

• π1 = 0.9π1 + 0.2π2
• π2 = 0.1π1 + 0.8π2
• π1 + π2 = 1

• Solving, π = ( 2
3 ,

1
3 )
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Properties of Markov Chain: Stationarity

Can we have a Markov chain with multiple stationary distributions?

A B

C D

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Table 11: Transition Matrix (A)

Xt+1

A B C D

Xt

A 0.5 0.5 0 0

B 0.5 0.5 0 0

C 0 0 0.5 0.5

D 0 0 0.5 0.5

• If we start at A or B, the stationary distribution is

(0.5, 0.5, 0, 0).

• If we start at C or D, the stationary distribution is

(0, 0, 0.5, 0.5).
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Properties of Markov Chain: Time Homogeneity

• A Markov chain is said to be homogeneous if the transition

probabilities are independent of the time t.

• We have the same transition matrix A for all t.
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Properties of Markov Chain: Irreducibility

• A Markov chain is said to be irreducible if every state is

accessible from every other state.

• In other words, there is a non-zero probability of reaching any

state from any other state.
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Properties of Markov Chain: Aperiodicity

• A Markov chain is said to be aperiodic if the greatest

common divisor of the set of all possible times between return

to a state is 1.

• In other words, the chain does not return to a state in a

periodic fashion.

• A simple check: can every state be reached in two consecutive

timestamps?

Example 1

Table 12: Transition Matrix (A)

Xt+1

Sunny Rainy

Xt
Sunny 0.9 0.1

Rainy 0.2 0.8

Can we be in Rainy or Sunny state at t = 0 and t = 1.

Yes -¿ Aperiodic
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Irreducible Markov Chain (2 States)

A B

0.5

0.5

0.5

0.5
P(A|A) = 0.5

P(A|B) = 0.5

P(B|A) = 0.5

P(B|B) = 0.5
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Non-Irreducible Markov Chain (2 States)

X Y

0.8

P(X |X ) = 0.2

P(X |Y ) = 0.8

P(Y |X ) = 0

P(Y |Y ) = 1
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Markov Chain Monte Carlo

(MCMC)



MCMC main idea

• We identify a way to construct a ‘nice’ Markov chain such

that its stationary probability distribution π(x) is our target

distribution p(x).

• We then run the Markov chain for a long time and use the

samples to estimate I .

• But, we thus far said: xi ∼ p(x) are drawn IID.

• But, if we use a Markov chain to generate samples, then the

samples are not i.i.d.

• But, we can still use the samples to estimate I using the

ergodic theorem.

• An irreducible, aperiodic, and stationary Markov chain has a

unique stationary distribution π and we can generate samples

from π and compute I .
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Ergodic Theorem for Markov Chains

Inspired from: MathematicalMonk’s playlisty on MCMC.

• From Monte Carlo sampling, we know we can estimate

I =
∫
f (x)p(x)dx by 1

N

∑N
i=1 f (xi ), where xi ∼ p(x).

• But, the samples are drawn i.i.d. from p(x).

• But, if we use a Markov chain to generate samples, then the

samples are not i.i.d.

• But, we can still use the samples to estimate I using the

ergodic theorem.
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Metropolis Hastings

• The basic idea is propose to move to a new state xi+1 from

the current state xi with probability q(xi+1|xi ), where q is

called the proposal distribution and our target density of

interest is p(= 1
Z p̃).

• The new state is accepted with probability α(xi , xi+1).

• If p(xi+1|xi ) = p(xi |xi+1), then α(xi , xi+1) = min(1, p(xi+1)
p(xi )

).

• If p(xi+1|xi ) 6= p(xi |xi+1), then

α(xi , xi+1) = min(1, p(xi+1)q(xi |xi+1)
p(xi )q(xi+1|xi ) ) = min(1, p̃(xi+1)q(xi |xi+1)

p̃(xi )q(xi+1|xi ) )

• Evaluating α, we only need to know the target distribution up

to a constant of proportionality or without normalization

constant.
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Algorithm: Metropolis Hastings

1. Initialize x0.

2. for i = 1, . . . ,N do:

3. Sample x∗ ∼ q(x∗|xi−1).

4. Compute α = min(1,
p̃(x∗)q(xi−1|x∗)
p̃(xi−1)q(x∗|xi−1)

)

5. Sample u ∼ U(0, 1)

6. if u ≤ α:

xi = x∗

else:

xi = xi−1
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Pop Quiz

How do we choose the initial state x0?

1. Start the Markov Chain at an initial x0.

2. Using the proposal q(x |xi ), run the chain long enough, say N1

steps.

3. Discard the first N1 − 1 samples (called ’burn-in’ samples).

4. Treat xN1 as first sample from p(x).

24



Pop Quiz

How do we choose the initial state x0?

1. Start the Markov Chain at an initial x0.

2. Using the proposal q(x |xi ), run the chain long enough, say N1

steps.

3. Discard the first N1 − 1 samples (called ’burn-in’ samples).

4. Treat xN1 as first sample from p(x).

24



MCMC demo

https://chi-feng.github.io/mcmc-demo/app.html
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