Sampling Methods

Nipun Batra October 12, 2023

IIT Gandhinagar

1. Markov Chains

2. Markov Chain Monte Carlo (MCMC)

• We want to compute posterior predictive distribution (or something similar)

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.
- We can approximate I by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$ are drawn **IID**.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.
- We can approximate I by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$ are drawn **IID**.
- Goal: sample from p(x), usually using unnormalized density $\tilde{p}(x)$

- *Transformation based methods*: Usually limited to drawing from standard distributions.
- *Rejection and Importance sampling*: Require selection of good proposal distirbutions.

In high dimensions, usually most of the density p(x) is concentrated within a tiny subspace of x. Moreover, those subspaces are difficult to be known a priori.

A solution to these are Markov Chain Monte Carlo methods.

Markov Chains

Table 1: Prior Probability (PI)			Table 2: Transition Matrix (A)				
						X_t	+1
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5		V	Sunny	0.9	0.1
				λ_t	Rainy	0.2	0.8

Tal	Table 1: Prior Probability (PI)			Table 2: Transition Matrix (A)			
				X_{t+1}			$^{+1}$
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5			Sunny	0.9	0.1
				X _t	Rainy	0.2	0.8

What is the probability of it being sunny on day 0?

Table 1: Prior Probability (PI)			Table 2: Transition Matrix (A)				
				X_{t+1}			+1
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5			Sunny	0.9	0.1
				X_t	Rainy	0.2	0.8

What is the probability of it being sunny on day 0?

0.5

Table 3: Prior Probability (PI)			Table 4: Transition Matrix (A)				
						X_t	+1
	$X_0 = $ Sunny	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5		X_t	Sunny	0.9	0.1
					Rainy	0.2	0.8

• What is the probability of it being sunny on day 0?

Table 3: Prior Probability (PI)			Table 4: Transition Matrix (A)					
						X_{t+1}		
	$X_0 = $ Sunny	$X_0 = Rainy$				Sunny	Rainy	
PI	0.5	0.5		V	Sunny	0.9	0.1	
				Λ_t	Rainy	0.2	0.8	

- What is the probability of it being sunny on day 0?
- 0.5

Let us consider the rainy-sunny example.

Table 5: Prior Probability (PI)			Table 6: Transition Matrix (A)				
						X_t	+1
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5			Sunny	0.9	0.1
				X _t	Rainy	0.2	0.8

• What is the probability of it being sunny/rainy on day 1?

Let us consider the rainy-sunny example.

Table 5: Prior Probability (PI)	Table 6: Transition Matrix (A)
	X_{t+1}
$X_0 = \text{Sunny} X_0 = \text{Rainy}$	Sunny Rainy

	<u> </u>				Sunny	rtaniy
PI	0.5	0.5		Sunnv	0.9	0.1
			X_t		0.0	0.0
				Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day 1?
- We can have two cases:
 - $X_0 = \text{Sunny: } P(X_1 = \text{Sunny}) = 0.9$
 - $X_0 = \text{Rainy: } P(X_1 = \text{Sunny}) = 0.2$
 - $P(X_1 = \text{Sunny}) = 0.5 \times 0.9 + 0.5 \times 0.2 = 0.55$
 - $P(X_1 = \text{Rainy}) = 0.5 \times 0.1 + 0.5 \times 0.8 = 0.45$

Let us consider the rainy-sunny example.

Table 7: Prior Probability (PI)			Table 8: Transition Matrix (A)					
						X_{t+1}		
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy	
PI	0.5	0.5		X _t	Sunny	0.9	0.1	
					Rainy	0.2	0.8	

• What is the probability of it being sunny/rainy on day 2?

Let us consider the rainy-sunny example.

Table 7: Prior Probability (PI)			Table 8: Transition Matrix (A)				
						X_t	$^{+1}$
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
ΡI	0.5	0.5		V	Sunny	0.9	0.1
				X _t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day 2?
- We can have two cases:

• $P(X_2 = \text{Sunny}) = 0.55 \times 0.9 + 0.45 \times 0.2 = 0.585$

• $P(X_2 = \text{Rainy}) = 0.55 \times 0.1 + 0.45 \times 0.8 = 0.415$

Let us consider the rainy-sunny example.

Table 9: Prior Probability (PI)			Table	e 10: Tra	nsition M	atrix (A)	
						X_t	+1
	$X_0 = $ Sunny	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5		V	Sunny	0.9	0.1
				\wedge_t	Rainy	0.2	0.8

• What is the probability of it being sunny/rainy on day T?

Table 9: Prior Probability (PI)			Table 10: Transition Matrix (A)					
			-			Xt	+1	
	$X_0 = $ Sunny	$X_0 = Rainy$				Sunny	Rainy	
PI	0.5	0.5	-	V	Sunny	0.9	0.1	
			\wedge_t		Rainy	0.2	0.8	

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.

Table 9: Prior Probability (PI)		Table 10: Transition Matrix (A)					
						X_t	+1
	$X_0 = Sunny$	$X_0 = Rainy$				Sunny	Rainy
PI	0.5	0.5				Sunny	T anny
<u> </u>	0.0	0.0		v	Sunny	0.9	0.1
				\wedge_t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.
- Distribution of X_T is given by $\pi = \pi POWER(A, T)$.

Table 9: Prior Probability (PI)		Table 10: Transition Matrix (A)				
					X_{t}	<u>+1</u>
	$X_0 = Sunny$	$X_0 = Rainy$			Suppy	Rainy
DI	0.5	0.5			Sunny	Rainy
	0.5	0.5	V	Sunny	0.9	0.1
			Λ _t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.
- Distribution of X_T is given by $\pi = \pi POWER(A, T)$.
- At T = 99 and T = 100, $\pi = (0.67, 0.33)$.

Notebook: markov-chain.ipynb

Questions:

• Does the distribution of X_T depend on initial distribution π ?

We can define statationary distribution as follows:

- A distribution π is said to be stationary for a Markov chain with transition matrix A if $\pi = \pi A$.
- For previous example,
 - $\pi = (\pi_1, \pi_2)$
 - $\pi_1 = 0.9\pi_1 + 0.2\pi_2$
 - $\pi_2 = 0.1\pi_1 + 0.8\pi_2$
 - $\pi_1 + \pi_2 = 1$
 - Solving, $\pi = (\frac{2}{3}, \frac{1}{3})$

Can we have a Markov chain with multiple stationary distributions?

Can we have a Markov chain with multiple stationary distributions?

Table 11: Transition Matrix (A)

		X_{t+1}				
		А	В	С	D	
	А	0.5	0.5	0	0	
v	В	0.5	0.5	0	0	
\wedge_t	С	0	0	0.5	0.5	
	D	0	0	0.5	0.5	

Can we have a Markov chain with multiple stationary distributions?

- If we start at A or B, the stationary distribution is (0.5, 0.5, 0, 0).
- If we start at C or D, the stationary distribution is (0,0,0.5,0.5).

• A Markov chain is said to be **homogeneous** if the transition probabilities are independent of the time *t*.

- A Markov chain is said to be **homogeneous** if the transition probabilities are independent of the time *t*.
- We have the same transition matrix A for all t.

• A Markov chain is said to be **irreducible** if every state is accessible from every other state.

- A Markov chain is said to be **irreducible** if every state is accessible from every other state.
- In other words, there is a non-zero probability of reaching any state from any other state.

• A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

Example 1

Table 12: Transition Matrix (A)

15

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

Example 1

Table 12: Transition Matrix (A)

15

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

Example 1

Table 12: Transition Matrix (A)

15

• A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

- A Markov chain is said to be **aperiodic** if the greatest common divisor of the set of all possible times between return to a state is 1.
- In other words, the chain does not return to a state in a periodic fashion.
- A simple check: can every state be reached in two consecutive timestamps?

Example 2

	X_{t+1}				
	State 1	State 2	State 3	State 4	
State 1	0	1	0	0	
State 2	0.5	0	0.5	0	

Table 13: Transition Matrix (A) for Four States

Irreducible Markov Chain (2 States)

Markov Chain Monte Carlo (MCMC)

MCMC main idea

- We identify a way to construct a 'nice' Markov chain such that its stationary probability distribution π(x) is our target distribution p(x).
- We then run the Markov chain for a long time and use the samples to estimate *I*.
- But, we thus far said: $x_i \sim p(x)$ are drawn **IID**.
- But, if we use a Markov chain to generate samples, then the samples are not i.i.d.
- But, we can still use the samples to estimate *I* using the **ergodic theorem**.
- An irreducible, aperiodic, and stationary Markov chain has a unique stationary distribution π and we can generate samples from π and compute *I*.

Inspired from: MathematicalMonk's playlisty on MCMC.

- From Monte Carlo sampling, we know we can estimate $I = \int f(x)p(x)dx$ by $\frac{1}{N}\sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$.
- But, the samples are drawn i.i.d. from p(x).
- But, if we use a Markov chain to generate samples, then the samples are not i.i.d.
- But, we can still use the samples to estimate *I* using the **ergodic theorem**.

- The basic idea is propose to move to a new state x_{i+1} from the current state x_i with probability $q(x_{i+1}|x_i)$, where q is called the proposal distribution and our target density of interest is $p(=\frac{1}{Z}\tilde{p})$.
- The new state is accepted with probability $\alpha(x_i, x_{i+1})$.
 - If $p(x_{i+1}|x_i) = p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})}{p(x_i)})$.
 - If $p(x_{i+1}|x_i) \neq p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})q(x_i|x_{i+1})}{p(x_i)q(x_{i+1}|x_i)}) = \min(1, \frac{\tilde{p}(x_{i+1})q(x_i|x_{i+1})}{\tilde{p}(x_i)q(x_{i+1}|x_i)})$
- Evaluating α, we only need to know the target distribution up to a constant of proportionality or without normalization constant.

- 1. Initialize x_0 .
- 2. for i = 1, ..., N do:
- 3. Sample $x^* \sim q(x^*|x_{i-1})$.
- 4. Compute $\alpha = \min(1, \frac{\tilde{p}(x^*)q(x_{i-1}|x^*)}{\tilde{p}(x_{i-1})q(x^*|x_{i-1})})$
- 5. Sample $u \sim \mathcal{U}(0, 1)$
- 6. if $u \leq \alpha$:

$$x_i = x^*$$

else:

$$x_i = x_{i-1}$$

How do we choose the initial state x_0 ?

How do we choose the initial state x_0 ?

- 1. Start the Markov Chain at an initial x_0 .
- 2. Using the proposal $q(x|x_i)$, run the chain long enough, say N_1 steps.
- 3. Discard the first $N_1 1$ samples (called 'burn-in' samples).
- 4. Treat x_{N_1} as first sample from p(x).

https://chi-feng.github.io/mcmc-demo/app.html