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Graphical model

Assume model parameters are θ and data is D. We can write the

joint probability distribution as:

x1 · · · xN

N
σµ
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Graphical model

Assume model parameters are θ and data is D. We can write the

joint probability distribution as:

xn

N

σµ

n = 1, · · · ,N
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Factorisation of Likelihood

P(D|θ) = P(x1, x2, . . . , xn|θ)

= P(x1|θ) · P(x2|θ) · . . . · P(xn|θ)
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Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5
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Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5

I randomly pick up a student and ask them their marks. They say

82. Which course do you think they are from? To keep things

simple, for now assume that all three courses have equal number of

students.
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Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5

I randomly pick up a student and ask them their marks. They say

82. Which course do you think they are from?

Most likely C1. But why?
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Pop Quiz

Let us plot the probability density functions of the three courses.
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Pop Quiz

Let us plot the probability density functions of the three courses.
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Notebook (bayes-librarian.ipynb)

12



Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?

Let us evaluate probability density function at 20 for different

values of µ for σ = 1, i.e., f (x = 20|µ, σ = 1).
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?

Let us evaluate probability density function at 20 for different

values of µ for σ = 1, i.e., f (x = 20|µ, σ = 1).

Importantly, this is a function of µ and not x (which is fixed at 20).
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Notebook (mle-univariate.ipynb)
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Pop Quiz 3

Let us now go back to our original problem. We have three courses:

C1, C2, C3. Assume no student takes more than one course.

We ask two students their marks. The first student says 82 and

the second student says 72. Which course do you think they are

from? Assumption: Both are from the same course.

Let us create a table of probabilities for each course:
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MLE for Univariate Normal

Distribution



Univariate Normal Distribution

The probability density function of a univariate normal distribution

is given by:

f (x |µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
(1)

Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution. We want

to estimate the parameters θ = {µ, σ} from the data.

Our likelihood function is given by:

P(D|θ) = L(µ, σ2) =
n∏

i=1

f (xi |µ, σ2) (2)
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Log Likelihood Function

Log-likelihood function:

logL(µ, σ2) =
n∑

i=1

log f (xi |µ, σ2) (3)

Simplifying the above equation, we get:

logL(µ, σ2) =
n∑

i=1

log f (xi |µ, σ2)

=
n∑

i=1

log

(
1√

2πσ2
exp

(
−(xi − µ)2

2σ2

))

=
n∑

i=1

(
log

(
1√

2πσ2

)
+ log

(
exp

(
−(xi − µ)2

2σ2

)))
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logL(µ, σ2) =
n∑

i=1

(
log

(
1√

2πσ2

)
− (xi − µ)2

2σ2

)

=
n∑

i=1

(
−1

2
log(2πσ2)− (xi − µ)2

2σ2

)

= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

logL(µ, σ2) = −n

2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(xi − µ)2

21



Log-likelihood surface plot

We have 50 samples from a normal distribution with µ = 0 and

σ = 1. Let us plot the log-likelihood surface for different values of

µ and σ.

Notebook mle-univariate
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Maximum Likelihood Estimate for µ

To find the MLE for µ, we differentiate the log-likelihood function

with respect to µ and set it to zero:

∂ logL(µ, σ2)

∂µ
=

∂

∂µ

(
−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

)
= 0

∂

∂µ

(
n∑

i=1

(xi − µ)2

)
= 0

Maximum Likelihood Estimate for µ

MLE of µ, denoted as µ̂MLE, is given by:

µ̂MLE =
1

n

n∑
i=1

xi
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MLE for σ for normally distributed data

Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

logL(µ, σ2) = −n

2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(xi − µ)2

Now, we can differentiate the log-likelihood function with respect

to σ and equate it to zero.
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MLE for σ for normally distributed data

∂

∂σ
logL(µ, σ2) = −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0

Multiplying through by σ3, we have:

−nσ2 +
n∑

i=1

(xi − µ)2 = 0

Maximum Likelihood Estimate for σ2

MLE of σ2, denoted as σ̂2
MLE, is given by:

σ2 =
1

n

n∑
i=1

(xi − µ)2
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Population v/s Sample

Distribution of the population:

N (µ, σ2)
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Population v/s Sample

Entire population:

∞ samples from N (µ, σ2)
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Population v/s Sample

Goal estimate of parameters µ and σ2 from a sample:

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 sample 1
sample 2

28



Notebook (mle-biased.ipynb)
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Sample Size = 3, Sample Number = 0
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Sample Size = 3, Sample Number = 1
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Sample Size = 3, Sample Number = 2
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Sample Size = 3, Sample Number = 3
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Sample Size = 3, Sample Number = 4
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Sample Size = 3, Sample Number = 5
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Quality of Estimate from Sample Size = 3
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Sample Size = 4, Sample Number = 0
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Sample Size = 4, Sample Number = 1

3 2 1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
x)

Sample size: 4
Sample parameters: = 0.76, 2 = 1.71

samples
true distribution
estimated distribution

38



Sample Size = 4, Sample Number = 2
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Sample Size = 4, Sample Number = 3
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Sample Size = 4, Sample Number = 4
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Sample Size = 4, Sample Number = 5
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Quality of Estimate from Sample Size = 4
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Sample Size = 5, Sample Number = 0
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Sample Size = 5, Sample Number = 1
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Sample Size = 5, Sample Number = 2
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Sample Size = 5, Sample Number = 3
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Sample Size = 5, Sample Number = 4
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Sample Size = 5, Sample Number = 5
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Quality of Estimate from Sample Size = 5
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Sample Size = 10, Sample Number = 0
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Sample Size = 10, Sample Number = 1
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Sample Size = 10, Sample Number = 2
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Sample Size = 10, Sample Number = 3
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Sample Size = 10, Sample Number = 4
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Sample Size = 10, Sample Number = 5
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Quality of Estimate from Sample Size = 10
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Sample Size = 100, Sample Number = 0
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Sample Size = 100, Sample Number = 1
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Sample Size = 100, Sample Number = 2
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Sample Size = 100, Sample Number = 3
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Sample Size = 100, Sample Number = 4
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Sample Size = 100, Sample Number = 5
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Quality of Estimate from Sample Size = 100
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Quality of Estimate (of Variance) v/s Sample Size (N)
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Quality of Estimate (of Variance) v/s Sample Size (N)
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Can you think of a way to improve the estimate of variance? Hint:

Think of some function of the number of samples.
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Quality of Estimate (of Variance) v/s Sample Size (N)
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Bias of an Estimator

Bias of an Estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

Bias(θ̂) = E(θ̂)− θ

where E(θ̂) is the expected value of the estimator θ̂.

• An estimator is said to be unbiased if Bias(θ̂) = 0.

• An estimator is said to be biased if Bias(θ̂) 6= 0.
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Bias of an Estimator: Relation to Bias-Variance Tradeoff in

ML

Slides from ML course

69

https://nipunbatra.github.io/ml2023/lectures/cross-validation.pdf


Bias of an Estimator: Relation to SGD

Link from ML course

70

https://florian.github.io/estimators/


Bias of an Estimator: µ̂MLE

Reference

71

https://online.stat.psu.edu/stat415/lesson/1/1.3


MLE for Bernoulli Distribution

The probability mass function of a bernoulli distribution is given by:

f (x |θ) = θx(1− θ)(1−x) (4)

Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution and

xi ∈ {0, 1}. We want to estimate the parameter θ from the data.

Our likelihood function is given by:

P(D|θ) = L(θ) =
n∏

i=1

f (xi |θ) (5)
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Graphical model

Assume model parameters are θ and data is D. We can write the

joint probability distribution as:

xn

B

θ

n = 1, · · · ,N
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Log Likelihood Function

Log-likelihood function:

logL(θ) =
n∑

i=1

log f (xi |θ) (6)

Simplifying the above equation, we get:

logL(θ) =
n∑

i=1

log f (xi |θ)

=
n∑

i=1

log
(
θxi (1− θ)(1−xi )

)
=

n∑
i=1

(
log (θxi ) + log

(
(1− θ)(1−xi )

))
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logL(θ) =
n∑

i=1

(xi log (θ) + (1− xi ) log (1− θ))

Log Likelihood Function for Bernoulli Distribution

Log-likelihood function for bernoulli distributed data is:

logL(θ) =
n∑

i=1

(xi log(θ) + (1− xi ) log(1− θ))
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Maximum Likelihood Estimate for θ

To find the MLE for θ, we differentiate the log-likelihood function

with respect to θ and set it to zero:

∂ logL(θ)

∂θ
=

∂

∂θ

(
n∑

i=1

(xi log (θ) + (1− xi ) log (1− θ))

)

=
n∑

i=1

(
∂

∂θ
(xi log (θ)) +

∂

∂θ
(1− xi ) log (1− θ)

)

=
n∑

i=1

(
xi
∂

∂θ
log (θ) + (1− xi )

∂

∂θ
log (1− θ)

)

=
n∑

i=1

(
xi
θ
− (1− xi )

1− θ

)
= 0
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∂ logL(θ)

∂θ
=

n∑
i=1

(
xi (1− θ)− θ(1− xi )

θ(1− θ)

)
= 0

=
n∑

i=1

(
xi − xiθ − θ + θxi

θ(1− θ)

)

=
n∑

i=1

(
xi − θ
θ(1− θ)

)

=
n∑

i=1

(xi − θ) = 0

=
n∑

i=1

xi −
n∑

i=1

θ = 0

=
n∑

i=1

xi − nθ = 0
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θ =

∑n
i=1 xi
n

Maximum Likelihood Estimate for θ

MLE of θ, denoted as θ̂MLE, is given by:

θ̂MLE =

∑n
i=1 xi
n
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For example if we have a Bernoulli Distribution with θ = 0.2, the

likelihood, P(D|θ) is given below:
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MLE for Multivariate Normal

Distribution



MLE for Multivariate Normal Distribution

The probability density function of a multivariate normal

distribution is given by:

f (x |µ,Σ) = (2π)−
k
2 det(Σ)−

1
2 exp−

1
2

(x−µ)T Σ−1(x−µ) (7)

Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution. We want

to estimate the parameters θ = µ, σ from the data.

Our likelihood function is given by:

P(D|θ) = L(µ,Σ) =
n∏

i=1

f (xi |µ,Σ) (8)
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For example: A bivariate Normal distribution can be visualized as

given below:
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Log Likelihood Function

Log-likelihood function:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ) (9)

Simplifying the above equation, we get:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ)

=
n∑

i=1

log
(

(2π)−
k
2 det(Σ)−

1
2 exp−

1
2

(xi−µ)T Σ−1(xi−µ)
)

=
n∑

i=1

log((2π)−
k
2 ) +

n∑
i=1

log(det(Σ)−
1
2 )+

n∑
i=1

log(exp−
1
2

(xi−µ)T Σ−1(xi−µ)))
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Continuing, we get:

= −kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

Log Likelihood Function for Multivariate Normal Distribution

Log-likelihood function for multivariate normally distributed

data is:

−kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)
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Maximum Likelihood Estimate for µ

To find the MLE for µ, we differentiate the log-likelihood function

with respect to µ and set it to zero:

=
∂

∂µ

(
−kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

=
∂

∂µ

(
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

= −1

2

n∑
i=1

(
Σ−1(xi − µ) + (xi − µ)TΣ−1

)
= 0

= −1

2

n∑
i=1

2Σ−1(xi − µ) = 0

as (xi − µ)TΣ−1 = Σ−1(xi − µ)
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= Σ−1
n∑

i=1

(xi − µ) = 0

=
n∑

i=1

(xi )− nµ = 0

µ =

∑n
i=1 xi
n

Maximum Likelihood Estimate for µ

MLE of µ, denoted as µ̂MLE, is given by:

µ̂MLE =
1

n

n∑
i=1

xi
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MLE for Σ for multivariate normally distributed data

Recall that the log-likelihood function is given by:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ) (10)

Let us find the maximum likelihood estimate of Σ now. We can do

this by taking the derivative of the log-likelihood function with

respect to Σ and equating it to zero.

∂ logL(µ,Σ)

∂Σ
=

n∑
i=1

∂ log f (xi |µ,Σ)

∂Σ
= 0 (11)
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After differentiating and simplifying, we get:

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

Maximum Likelihood Estimate for Σ

MLE of Σ, denoted as Σ̂MLE, is given by:

Σ̂MLE =
1

n

n∑
i=1

(xi − µ)(xi − µ)T
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