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Let us assume we have a dataset

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rd , yi ∈ R.

We consider a regression problem with the likelihood function:

p(y |x) = N(y |f (x), σ2).
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The functional relationship between x and y is given as

y = f (x) + ε where ε ∼ N(0, σ2).

where f (x) = xT θ for linear regression
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Likelihood for linear regression

Likelihood is generally given as:

P(D|θ) (1)

Our data is: D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

Note: For purposes of computing likelihood, we assume that the

input (x) is fixed and variation is only in the output (y).

Our likelihood function (Normal distribution) is given by:

P(Y|X , θ) = p(y1, . . . , yn|x1, . . . , xn, θ) =
n∏

i=1

p(yi |xi , θ) (2)
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Likelihood for linear regression

The MLE equation is given by:

θMLE ∈ argθ max p(Y |X , θ) (3)

Maximizing the likelihood ≡ Maximizing the log likelihood ≡
Minimizing the negative log likelihood.

Taking the negative log, we get:

− log p(Y | X ,θ) = − log
N∏
i=1

p(yi | x i ,θ)

= −
N∑
i=1

log p(yi | x i ,θ)

For a given point (xi , yi ),

− log p(yi | x i ,θ) =
1

2σ2

(
yi − x>i θ

)2
+ const
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Likelihood for linear regression

Thus the negative log likelihood is simplified to:

NLL(θ) :=
1

2σ2

N∑
i=1

(
yi − x>i θ

)2
=

1

2σ2
(y − Xθ)>(y − Xθ) =

1

2σ2
‖y − Xθ‖2

Negative Log Likelihood for Linear Regression

NLL is proportional to:

1

2σ2
‖y − Xθ‖2

This is the same as the squared error loss.
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To minimize NLL(θ), we differentiate with respect to θ.

θ = (XTX )−1XT y (4)

Maximum Likelihood Estimate for θ

MLE of θ, denoted as θ̂MLE, is given by:

θ̂MLE = (XTX )−1XT y
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Notebook: log-likelihood-linreg.ipynb
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Logistic Regression and Coin Toss

Coin Toss: We are given coin tosses: D = {y1, y2, . . . , yn}, where

yi ∈ {0, 1}.

Logistic regression: We are given a dataset:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rd , yi ∈ {0, 1}.
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Logistic Regression and Coin Toss

Coin Toss: The probability of getting a head (class 1) is given by

θ, i.e.

p(y = 1) = θ

Logistic regression: The probability that a given input x belongs

to class 1 is given by:

p(y = 1|x) = σ(xT θ)
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Logistic Regression and Coin Toss

Coin Toss: Likelihood is given by:

L(θ) =
n∏

i=1

θyi (1− θ)1−yi

Logistic regression: Likewise, likelihood is given by:

L(θ) =
n∏

i=1

σ(xTi θ)yi (1− σ(xTi θ))1−yi
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1−yi

16



Logistic Regression and Coin Toss

Coin Toss: Likelihood is given by:

L(θ) =
n∏

i=1

θyi (1− θ)1−yi

Logistic regression: Likewise, likelihood is given by: To simplify,
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Logistic Regression and Coin Toss

Coin Toss: Log likelihood is given by:
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Negative Log Likelihood for Logistic Regression

Negative Log Likelihood for Logistic Regression

NLL is proportional to:

−
n∑

i=1

yi log(ŷi ) + (1− yi ) log(1− ŷi )

which is the same as the binary cross entropy loss function.
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Notebook: log-likelihood-linreg.ipynb
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Multi-class classification

Self Study Notebook on Categorical distribution:

distributions.ipynb
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