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Let us assume we have a dataset
D = {(x1,y1), (x2,¥2), - - -, (Xn, ¥n)}, where x; € R, y; € R.



Let us assume we have a dataset
D = {(x1,y1), (x2,¥2), - - -, (Xn, ¥n)}, where x; € R, y; € R.

We consider a regression problem with the likelihood function:
p(ylx) = N(y|f(x),o?).
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Likelihood for linear regression

Likelihood is generally given as:
P(DI0) (1)

Our data is: D = {(x1,y1), (x2,¥2), -, (Xn, ¥n)}

Note: For purposes of computing likelihood, we assume that the
input (x) is fixed and variation is only in the output (y).

Our likelihood function (Normal distribution) is given by:

PVIX,0) = p(y1, -, ynlx1, -, xn, 0) = [ pyilxi 0)  (2)
i=1
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Likelihood for linear regression

The MLE equation is given by:
OmLe € argg max p(Y|X, 0) (3)

Maximizing the likelihood = Maximizing the log likelihood =
Minimizing the negative log likelihood.
Taking the negative log, we get:

—logp(Y | X,0) = |ong yi | xi,0)

= Z log p(yi | xi,0)
i=1
For a given point (x;, yi),

1 T\ 2
—logp(yi | xi,0) = 202 (yf — X; 0) + const
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Likelihood for linear regression

Thus the negative log likelihood is simplified to:

NLL(O) : 222()/, x0)

1 1
= ﬁ(}’ - X0) (y — X0) = FHY - X9”2

Negative Log Likelihood for Linear Regression

NLL is proportional to:

1
Flly - X‘9||2

This is the same as the squared error loss.



To minimize NLL(6), we differentiate with respect to 6.
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To minimize NLL(6), we differentiate with respect to 6.

=(XTX)"IXxTy (4)

Maximum Likelihood Estimate for 6

MLE of 6, denoted as Oy, is given by:

é\MLE = (XTX)_ley
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Notebook: log-likelihood-linreg.ipynb
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Logistic Regression and Coin Toss

Coin Toss: We are given coin tosses: D = {y1,y2,...,¥n}, Where
yi € {0,1}.
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Logistic Regression and Coin Toss

Coin Toss: We are given coin tosses: D = {y1,y2,...,¥n}, Where
yi € {0,1}.

Logistic regression: We are given a dataset:
D = {(x1,y1), (x2,¥2), ..., (xn,¥n)}, where x; € R, y; € {0,1}.
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Logistic Regression and Coin Toss

Coin Toss: The probability of getting a head (class 1) is given by
0, i.e.

Logistic regression: The probability that a given input x belongs

to class 1 is given by:

ply = 1lx) = o(x"6)
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Coin Toss: We can say

y ~ Bernoulli(0)
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Logistic Regression and Coin Toss

Coin Toss: We can say
y ~ Bernoulli(0)

Logistic regression: We can say

y ~ Bernoulli(a(x9))
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Logistic Regression and Coin Toss

Coin Toss: Likelihood is given by:

L(6) = H 0%i(1— )t
i=1
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Logistic Regression and Coin Toss

Coin Toss: Likelihood is given by:
L) =[] er(1—0)
i=1

Logistic regression: Likewise, likelihood is given by:

L(0) = H o(x 0)i(1— o(x 6))
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Coin Toss: Likelihood is given by:

L(h) = H 0¥i(1— )Y
i=1
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Logistic Regression and Coin Toss

Coin Toss: Likelihood is given by:

0)=]Je" (-0t
i=1

Logistic regression: Likewise, likelihood is given by: To simplify,

we can write: y; = o(x;"0) Thus, likelihood is given by:

H%y’ _ 1 —Yi
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Logistic Regression and Coin Toss

Coin Toss: Log likelihood is given by:
|0g ZYI IOg 1_)//)|Og(1_6)

Logistic regression: Likewise, log likelihood is given by:

Iog Zy, Iog y, 1_}/l)|0g(1_YI)
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Negative Log Likelihood for Logistic Regression

Negative Log Likelihood for Logistic Regression

NLL is proportional to:
n
— Y yilog(yi) + (1 — yi) log(1 — i)
i=1

which is the same as the binary cross entropy loss function.
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Notebook: log-likelihood-linreg.ipynb
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Multi-class classification

Self Study Notebook on Categorical distribution:
distributions.ipynb
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