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The Discovery That Transformed Pi

2

https://www.youtube.com/watch?v=gMlf1ELvRzc


Monte Carlo Simulation



General Form

The general form of Monte Carlo methods is: The expectation of a

function f (x) with respect to a distribution p(x) is given by:

Ex∼p(x)[f (x)] =

∫
f (x)p(x)dx (1)

Using Monte Carlo methods, we can estimate the above

expectation by sampling xi from p(x) and computing the average

of f (xi ).

Ex∼p(x)[f (x)] ≈ 1

N

N∑
i=1

f (xi ) (2)

where xi ∼ p(x).
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Estimating Pi using Monte Carlo (Part 1)

We can estimate the value of pi using Monte Carlo methods by

considering a unit square with a quarter circle inscribed within it.

• Let p(x) be defined over the unit square using the uniform

distribution in two dimensions, i.e., p(x) = U(x) = 1 for

x ∈ [0, 1]2.

• Let f (x) be the indicator function defined as follows:

f (x) =

Green(1), if x falls inside the quarter circle,

Red(0), otherwise.
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Estimating Pi using Monte Carlo (Part 1)

• Or, we can write f (x) to be the following:

f (x) =

1, if x21 + x22 ≤ 1,

0, otherwise.

• Or, using the indicator function, we can write f (x) to be the

following:

f (x) = I(x21 + x22 ≤ 1)

x1

x2

1

1 π
4 ≈

Green area
Green area+Red area
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Notebook: mc_sampling_intro.ipynb
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mc_sampling_intro.ipynb


Estimating prior predictive distribution

• Let p(θ) be the prior distribution of parameter. Say, for

example, p(θi ) = N (0, 1) ∀i or p(θ) = N (µ,Σ).

• Let p(y |θ, x) be the likelihood function. Say, for example,

p(y |θ, x) = N (xT θ, 1).

• Then, the prior predictive distribution is given by:

p(y |x) =

∫
p(y |θ, x)p(θ)dθ (3)

p(y |x) ≈ 1

N

N∑
i=1

p(y |θi , x) (4)

where θi ∼ p(θ).
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Estimating prior predictive distribution

Notebook: mc-linreg-predictive.ipynb
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mc-linreg-predictive.ipynb


Estimating posterior predictive distribution

Extending for posterior predictive distribution, we have:

p(y |x ,D) =

∫
p(y |θ, x)p(θ|D)dθ (5)

p(y |x ,D) ≈ 1

N

N∑
i=1

p(y |θi , x) (6)

where θi ∼ p(θ|D).
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Estimating marginal likelihood or evidence term for linear re-

gression

[Ref: MML book 9.3.5]

We consider the following generative process:

θ ∼ N (m0,S0)

yn | xn,θ ∼ N
(
x>n θ, σ

2
)
,

n = 1, . . . ,N.

The marginal likelihood is given by

p(Y | X ) =

∫
p(Y | X ,θ)p(θ)dθ

=

∫
N
(
y | Xθ, σ2I

)
N (θ | m0,S0)dθ

= N
(
y | Xm0,XS0X> + σ2I

)
(7)
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Estimating marginal likelihood or evidence term for linear re-

gression

Instead if we used Monte Carlo methods, we would have:

I = p(Y | X ) ≈ 1

N

N∑
i=1

p(Y | X ,θi ) (8)

where θi ∼ p(θ).
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Estimating Marginal Likelihood in Linear Regression

Generally, we work with log probabilities instead:

log I = log p(Y | X ) ≈ log

(
1

N

N∑
i=1

p(Y | X ,θi )

)
(9)

The log-sum-exp trick helps us compute this efficiently.

12



Log-Sum-Exp Trick

[Ref: https:

//gregorygundersen.com/blog/2020/02/09/log-sum-exp/]

The log-sum-exp trick is a technique to compute log
(

1
N

∑N
i=1 e

ai
)

more efficiently.

log

(
1

N

N∑
i=1

eai

)
= log

(
emax(ai )

1

N

N∑
i=1

eai−max(ai )

)
(10)

= max(ai ) + log

(
1

N

N∑
i=1

eai−max(ai )

)
(11)
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Log-Sum-Exp Trick in Linear Regression

Applying the log-sum-exp trick to linear regression:

log I = log p(Y | X ) ≈ log

(
1

N

N∑
i=1

p(Y | X ,θi )

)
(12)

= log

(
1

N

N∑
i=1

e log p(Y|X ,θi )

)
(13)

= log

(
1

N

N∑
i=1

e log p(Y|X ,θi )−max(log p(Y|X ,θi ))

)
(14)

= max(log p(Y | X ,θi ))+log

(
1

N

N∑
i=1

e log p(Y|X ,θi )−max(log p(Y|X ,θi ))

)
(15)
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Efficient Computation

The log-sum-exp trick allows us to compute log I more efficiently

by:

• Subtracting the maximum value of log p(Y | X ,θi ) to avoid

numerical issues with exponentiation.

• Adding the maximum value back after the sum of

exponentials.

This technique helps prevent overflow and underflow issues when

dealing with large or small values in the exponentials.
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Estimating Marginal Likelihood in Linear Regression

Notebook: mc-linreg-evidence.ipynb
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Unbiased Estimator?

Is Monte Carlo Sampling a biased or unbiased estimator?

We know:

Ex∼p(x)[f (x)] =

∫
f (x)p(x)dx = φ (16)

Let xi ∈ 1, . . . ,N be i.i.d samples:

φ̂ =
1

N

N∑
i=1

f (xi )

E(φ̂) =

∫
1

N

N∑
i=1

f (xi )p(xi )dx =
1

N

N∑
i=1

∫
f (xi )p(xi )dx

=
1

N

N∑
i=1

E(f (xi )) = φ

Thus, it is an unbiased estimator!

17



Sampling converges slowly

The expected square error of the Monte Carlo estimate is given by:

E
(
φ̂− E(φ̂)

)2
= E

[
1

N

N∑
i=1

(f (xi )− φ)

]2

=
1

N2

N∑
i=1

N∑
j=1

E(f (xi )f (xj))− φE(f (xi ))− E(f (xj))φ+ φ2

=
1

N2

N∑
i=1

∑
i 6=j

φ2 − 2φ2 + φ2

+ E(f 2)− φ2
 =

1

N
V(f )

∴ E
(
φ̂− E(φ̂)

)2
= O(N−1)

Thus, the expected error drops as O(N−
1
2 ).

18



Sampling from common probability

distributions



Sampling from uniform U(0, 1)

[Ref: https://en.wikipedia.org/wiki/Linear_

congruential_generator]

• Question: How can you generate samples from the uniform

distribution in [0, 1]?

• Hint: Linear Congruential Generator (LCG) among other

PRNGs.

•
xn+1 = (axn + c) mod m (17)

• where, a, c ,m are constants and x0 is the seed

• xn+1 is the next random number between 0 and m − 1

• xn+1

m is the next random number between 0 and 1

19
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Sampling from uniform U(0, 1)

From Wikipedia page on LCG

20



Sampling from uniform U(0, 1)

Notebook: random-uniform.ipynb
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Sampling from uniform U(a, b)

• Assume we have X ∼ U(0, 1)

• Then, Y = a + (b − a)X ∼ U(a, b)

22
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Inverse CDF sampling

[Inspired by content from Ben Lambert and Phillip Hennig]

• Let us try to generate samples from the exponential

distribution.

• The PDF of the exponential distribution is given by:

• PDF: p(x) = λe−λx

• CDF: F (x) = 1− e−λx . Prove!
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Inverse CDF sampling

• PDF: p(x) = λe−λx

• CDF: F (x) = 1− e−λx . Prove!

We use RV Y instead of X to avoid confusion with the CDF limits

of integration.

F (x) =

∫ x

−∞
p(y)dy (18)

But, we know that p(y) = 0 for y < 0.

F (x) =

∫ x

0
p(y)dy (19)

F (x) =

∫ x

0
λe−λydy (20)

24
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F (x) =

∫ x

0
λe−λydy (20)
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Let z = −λy . Thus, dz = −λdy ; and dy = − 1
λdz .

At y = 0, z = 0. At y = x , z = −λy .

Thus,

F (x) =

∫ −λx
0

λez
(
− 1

λ

)
dz (21)

F (x) = −
∫ −λx
0

ezdz (22)

F (x) = − [ez ]−λx0 (23)

F (x) = −
(
e−λx − e0

)
(24)

F (x) = 1− e−λx (25)
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Inverse CDF Sampling for Number of samples = 1

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.

0 1 2 3 4 5

x

0.0
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0.4

0.6

0.8

1.0

CD
F

Exponential Distribution CDF
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Inverse CDF Sampling for Number of samples = 2

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 3

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 4

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 5

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 6

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 7

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 8

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF Sampling for Number of samples = 9

• Let us consider the CDF (F (x)) of the exponential

distribution (λ = 1) and try to generate samples from it.

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.
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Inverse CDF sampling

• We generate a random number u ∼ U(0, 1).

• We then find the value of x such that F (x) = u.

• This is equivalent to finding the inverse of the CDF, i.e.,

F−1(u).

• For the exponential distribution, let us try to find F−1(u).

• u = 1− e−x

• x = − log(1− u)
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Notebook: inverse-cdf.ipynb
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Inverse CDF sampling

[From Wikipedia page on Inverse Transform Sampling]

https:

//en.wikipedia.org/wiki/Inverse_transform_sampling
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Generating samples from N (0, 1) using Box-Muller Transform

[From Wikipedia page on Box-Muller Transform]

• Let U1,U2 ∼ U(0, 1) be two independent random variables.

• Let Z0,Z1 ∼ N (0, 1) be two independent random variables.

• Then, R =
√
−2 logU1 and Θ = 2πU2 are independent

random variables.

• Then, Z0 = R cos Θ and Z1 = R sin Θ are independent

random variables.

• Z0 and Z1 are independent and identically distributed (i.i.d)

N (0, 1) random variables.
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Notebook: sampling-normal.ipynb
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Generating samples from N (µ, σ)

• Let Z0 ∼ N (0, 1) be independent random variables.

• Then, X = µ+ σZ0 is a random variable with N (µ, σ)

distribution.
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Generating samples from N (µ, σ)

• Let Z0 ∼ N (0, 1) be independent random variables.

• Then, X = µ+ σZ0 is a random variable with N (µ, σ)

distribution.

40



Generating samples from Multivariate N (µ,Σ)

Drawing values from the distribution in https://en.wikipedia.

org/wiki/Multivariate_normal_distribution
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