Sampling Methods

Nipun Batra September 18, 2023

IIT Gandhinagar

[Rejection Sampling](#page-7-0) [Importance Sampling](#page-62-0)

- 1. [Markov Chains](#page-66-0)
- 2. [Importance Sampling](#page-69-0)
- 3. [Gibbs Sampling](#page-74-0)
- 4. [Markov Chain Monte Carlo](#page-81-0)

• We want to compute posterior predictive distribution (or something similar)

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where $p(x)$ is the posterior distribution.
- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where $p(x)$ is the posterior distribution.
- We can approximate *I* by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$.
- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where $p(x)$ is the posterior distribution.
- We can approximate *I* by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$.
- Goal: sample from $p(x)$.

• Let $p(x)$ be the target distribution from which we want to sample.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can write $p(x) = \frac{\tilde{p}(x)}{Z}$, where Z is the normalization constant.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can write $p(x) = \frac{\tilde{p}(x)}{Z}$, where Z is the normalization constant.
- Typically, $\tilde{p}(x)$ is the joint distribution of the data and the parameters.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can write $p(x) = \frac{\tilde{p}(x)}{Z}$, where Z is the normalization constant.
- Typically, $\tilde{p}(x)$ is the joint distribution of the data and the parameters.
- Let $q(x)$ be a proposal distribution from which we can sample.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can write $p(x) = \frac{\tilde{p}(x)}{Z}$, where Z is the normalization constant.
- Typically, $\tilde{p}(x)$ is the joint distribution of the data and the parameters.
- Let $q(x)$ be a proposal distribution from which we can sample.
- Let M be a constant such that $M \geq \frac{p(x)}{q(x)}$ $\frac{p(x)}{q(x)}$ for all x.

- Let $p(x)$ be the target distribution from which we want to sample.
- Typically, $p(x)$ is the posterior distribution.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can write $p(x) = \frac{\tilde{p}(x)}{Z}$, where Z is the normalization constant.
- Typically, $\tilde{p}(x)$ is the joint distribution of the data and the parameters.
- Let $q(x)$ be a proposal distribution from which we can sample.
- Let M be a constant such that $M \geq \frac{p(x)}{q(x)}$ $\frac{p(x)}{q(x)}$ for all x.
- Then, we can sample from $p(x)$ by sampling from $q(x)$ and accepting the sample with probability $\frac{p(x)}{Mq(x)}$.

Notebook: <rejection-sampling.ipynb>

Rejection Sampling (Rejected Sample)

Rejection Sampling (Accepted Sample)

Rejection Sampling (10 samples)

Rejection Sampling (10 samples) (KDE)

Rejection Sampling (1000 samples)

Rejection Sampling (1000 samples) (KDE)

Rejection Sampling (10000 samples)

Rejection Sampling (10000 samples) (KDE)

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
	- Show that the samples we accept are distributed according to $p(x)$.

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
	- Show that the samples we accept are distributed according to $p(x)$.
	- Or, the density of an accepted sample (say x_s) is $p(x_s)$ (and not $\tilde{p}(x_s)$).

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
	- Show that the samples we accept are distributed according to $p(x)$.
	- Or, the density of an accepted sample (say x_s) is $p(x_s)$ (and not $\tilde{p}(x_s)$).
- Acceptance Probability $\alpha(x)$: Probability that we accept a sample x_s generated from $q(x)$.

$$
\alpha(x_s) = \frac{\tilde{p}(x_s)}{Mq(x_s)} = P(Accept|x_s)
$$
 (1)
$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
 (2)

 \bullet where $P(\mathsf{x}_s | \mathsf{Accept})$ is the density of accepted sample x_s . We want to evaluate this and show this is $p(x_s)$.

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)} \tag{2}
$$

- \bullet where $P(\mathsf{x}_s | \mathsf{Accept})$ is the density of accepted sample x_s . We want to evaluate this and show this is $p(x_s)$.
- $P(Accept|x_s)$ is $\alpha(x_s)$

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)} \tag{2}
$$

- \bullet where $P(\mathsf{x}_s | \mathsf{Accept})$ is the density of accepted sample x_s . We want to evaluate this and show this is $p(x_s)$.
- $P(Accept|x_s)$ is $\alpha(x_s)$
- $P(x_s) = q(x)$ is the density of samples we draw from $q(x)$.

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)} \tag{2}
$$

- \bullet where $P(\mathsf{x}_s | \mathsf{Accept})$ is the density of accepted sample x_s . We want to evaluate this and show this is $p(x_s)$.
- $P(Accept|x_s)$ is $\alpha(x_s)$
- $P(x_s) = q(x)$ is the density of samples we draw from $q(x)$.
- $P(Accept)$ is the unconditional probability that we accept a sample generated from $q(x)$.

$$
P(Accept) = \int P(Accept |xs)P(xs)dxs
$$
 (3)

$$
P(Accept) = \int P(Accept |xs)P(xs)dxs
$$
 (3)

$$
P(Accept) = \int \alpha(x_s)q(x_s)dx_s \tag{4}
$$

$$
P(Accept) = \int P(Accept |xs)P(xs)dxs
$$
 (3)

$$
P(Accept) = \int \alpha(x_s)q(x_s)dx_s \qquad (4)
$$

$$
P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s
$$
 (5)

$$
P(Accept) = \int P(Accept |xs)P(xs)dxs
$$
 (3)

$$
P(Accept) = \int \alpha(x_s)q(x_s)dx_s \qquad (4)
$$

$$
P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s
$$
 (5)

$$
P(Accept) = \frac{1}{M} \int \tilde{p}(x_s) dx_s
$$
 (6)

• P(Accept) is the unconditional probability that we accept a sample generated from $q(x)$.

$$
P(Accept) = \int P(Accept |xs)P(xs)dxs
$$
 (3)

$$
P(Accept) = \int \alpha(x_s)q(x_s)dx_s \qquad (4)
$$

$$
P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s
$$
 (5)

$$
P(Accept) = \frac{1}{M} \int \tilde{p}(x_s) dx_s
$$
 (6)

$$
P(Accept) = \frac{Z}{M}
$$
 (7)

where Z is the normalization constant of $\tilde{p}(x)$.

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
(8)

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
(8)

$$
P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}
$$
(9)

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
(8)

$$
P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}
$$
(9)

$$
P(x_s|Accept) = \frac{\frac{\tilde{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}
$$
(10)

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
(8)

$$
P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}
$$
(9)

$$
P(x_s|Accept) = \frac{\frac{\tilde{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}
$$
(10)

$$
P(x_s|Accept) = \frac{\tilde{p}(x_s)}{Z}
$$
 (11)

$$
P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}
$$
(8)

$$
P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}
$$
(9)

$$
P(x_s|Accept) = \frac{\frac{\tilde{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}
$$
(10)

$$
P(x_s|Accept) = \frac{\tilde{p}(x_s)}{Z}
$$
 (11)

$$
P(x_s|Accept) = p(x_s)
$$
 (12)

• Let us assume $\tilde{p}(x)$ is D dimensional Gaussian $\mathcal{N}_D(0, \sigma_p^2 I)$

- Let us assume $\tilde{p}(x)$ is D dimensional Gaussian $\mathcal{N}_D(0, \sigma_p^2 I)$
- Let us assume our proposal distribution $q(x)$ is $\mathcal{N}_D(0, \sigma_q^2 I)$

- Let us assume $\tilde{p}(x)$ is D dimensional Gaussian $\mathcal{N}_D(0, \sigma_p^2 I)$
- Let us assume our proposal distribution $q(x)$ is $\mathcal{N}_D(0, \sigma_q^2 I)$

- How to choose multiplier M?
- Match the densities at the peak of $\tilde{p}(x)$ and $q(x)$, i.e. at $x = \vec{0}$.

•
$$
\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp\left(-\frac{1}{2\sigma_p^2} x^T x\right)
$$

•
$$
\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp\left(-\frac{1}{2\sigma_p^2} x^T x\right)
$$

•
$$
q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp\left(-\frac{1}{2\sigma_q^2} x^T x\right)
$$

•
$$
\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp\left(-\frac{1}{2\sigma_p^2} x^T x\right)
$$

•
$$
q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp\left(-\frac{1}{2\sigma_q^2} x^T x\right)
$$

• At
$$
x = \vec{0}
$$
, $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D}$ and $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D}$

•
$$
\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp\left(-\frac{1}{2\sigma_p^2} x^T x\right)
$$

•
$$
q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp\left(-\frac{1}{2\sigma_q^2} x^T x\right)
$$

• At
$$
x = \vec{0}
$$
, $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D}$ and $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D}$

•
$$
M = \frac{\tilde{\rho}(x)}{q(x)} = \frac{\sigma_q^D}{\sigma_p^D} = (\frac{\sigma_q}{\sigma_p})^D
$$

•
$$
M = \frac{\tilde{\rho}(x)}{q(x)} = \frac{\sigma_q^D}{\sigma_p^D} = \left(\frac{\sigma_q}{\sigma_p} \right)D
$$

\n• Let us assume $\sigma_p = 1$ and $\sigma_q = 1.1$
\n
$$
\begin{bmatrix}\n0^q \\
\vdots \\
0^{10^q} \\
0^{10^q}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0^q \\
\vdots \\
0^{10^n}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0^q \\
\vdots \\
0^{10^n}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 \\
\vdots \\
0\n\end{bmatrix}
$$

• Acceptance probability is very low as D increases.

- Rejection sampling is inefficient when the target distribution is very different from the proposal distribution. In this case, we will reject a lot of samples.
- This is a problem when sampling from high-dimensional distributions. Acceptance probability $\alpha(x)$ is very low.
- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where $p(x)$ is the posterior distribution.
- We can approximate *I* by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- We can approximate *I* by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$.
- But, we do not have access to $p(x)$. Rather, we have access to $\tilde{p}(x)$, which is proportional to $p(x)$.
- \bullet In rejection sampling, we took a sample x_i from $q(x)$ and accepted it with probability $\frac{\tilde{p}(x_i)}{Mq(x_i)}$.
- Can we use all samples x_i from $q(x)$ without rejection?
- \bullet In rejection sampling, we took a sample x_i from $q(x)$ and accepted it with probability $\frac{\tilde{p}(x_i)}{Mq(x_i)}$.
- Can we use all samples x_i from $q(x)$ without rejection?
- $I = \int f(x)p(x)dx \approx \frac{1}{N}$ $\frac{1}{N}\sum_{i=1}^{N}f(x_i)$, where $x_i \sim p(x)$.
- Let us choose a proposal distribution $q(x)$ which has support over the entire domain of $p(x)$.

•
$$
I = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx
$$

 $I = \int f(x)w(x)q(x)dx$, where $w(x) = \frac{p(x)}{q(x)}$. $w(x)$ is called the importance weight.

•
$$
I = \mathbb{E}_q[f(x)w(x)] = \sum_{i=1}^N f(x_i)w(x_i)
$$
, where $x_i \sim q(x)$.

Importance Sampling (with unnormlized $\tilde{p}(x)$ instead of $p(x)$)

$$
I = \int f(x)p(x)dx \approx \frac{1}{Z}\frac{1}{S}\sum_{s} f(x_{s})\frac{\tilde{p}(x_{s})}{q(x_{s})}
$$
(13)

Now, we need to estimate Z.

$$
Z = \int \tilde{p}(x) dx = \int \frac{\tilde{p}(x)}{q(x)} q(x) dx
$$

= $\mathbb{E}_q \left[\frac{\tilde{p}(x)}{q(x)} \right] = \frac{1}{S} \sum_{s} \frac{\tilde{p}(x_s)}{q(x_s)}$ (14)

Thus, we can write *I* as:

$$
I \approx \frac{1}{S} \sum_{s} f(x_{s}) \frac{\tilde{\rho}(x_{s})/q(x_{s})}{\frac{1}{s} \sum_{t} \tilde{\rho}(x_{t})/q(x_{t})} =: \sum_{s} f(x_{s}) \tilde{w}_{s}
$$
(15)

[Markov Chains](#page-66-0)

<https://nipunbatra.github.io/hmm/>

Notebook: mcmc=optimization.ipynb

[Importance Sampling](#page-69-0)

In rejection sampling, we saw that due to less acceptance probability, a lot of samples were wasted leading to more time and higher complexity to approximate a distribution.

Computing $p(x)$, $q(x)$ thus seems wasteful. Let us rewrite the equation as:

$$
\phi = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx
$$

$$
\sim \frac{1}{N}\sum_{i=1}^{N} f(x_i)\frac{p(x_i)}{q(x_i)} = \frac{1}{N}\sum_{i=1}^{N} f(x_i)w_i
$$

Here, $x_i \sim q(x)$. w_i is known as the importance(weight) of sample i.

However the normalization constant Z is generally not known to us. Thus writing:

$$
p(x) = \frac{\tilde{p}(x)}{Z} \tag{16}
$$

Now inserting this in earlier equations, we get:

$$
\phi = \frac{1}{Z} \int f(x) \tilde{p}(x) dx = \frac{1}{Z} \int f(x) \frac{\tilde{p}(x)}{q(x)} q(x) dx
$$

$$
\sim \frac{1}{NZ} \sum_{i=1}^{N} f(x_i) \frac{\tilde{p}(x_i)}{q(x_i)} = \frac{1}{NZ} \sum_{i=1}^{N} f(x_i) w_i
$$

We know that:

$$
Z = \int_{\infty}^{\infty} \tilde{p}(x) dx = \int_{\infty}^{\infty} \frac{\tilde{p}(x)}{q(x)} q(x) dx
$$

$$
= \frac{1}{N} \sum_{i=1}^{N} w_i
$$
Substuting this value of Z in the equation above, we get:

$$
\phi = \frac{1}{N} \sum_{i=1}^{N} f(x_i) w_i = \frac{\sum_{i=1}^{N} f(x_i) w_i}{\sum_{i=1}^{N} w_i}
$$

$$
= \sum_{i=1}^{N} f(x_i) W_i
$$

Here $W_i = \frac{w_i}{\sum_{i=1}^{N} w_i}$ are the normalized weights.

Limitations

• Recall that Var $\hat{\phi} = \frac{var(f)}{N}$ $\frac{N(t)}{N}$. Importance sampling replaces var(f) with var(f $\frac{p}{q}$ $\frac{p}{q}$). At positions where $p >> q$, the weight can tend to $\infty!$

[Gibbs Sampling](#page-74-0)

Suppose we wish to sample $\theta_1, \theta_2 \sim p(\theta_1, \theta_2)$, but cannot use:

- direct simulation
- accept-reject method
- Metropolis-Hasting

But we can sample using the conditionals i.e.:

- $p(\theta_1|\theta_2)$ and
- $p(\theta_2|\theta_1)$,

then we can use Gibbs sampling.

Suppose $\theta_1, \theta_2 \sim p(\theta_1, \theta_2)$ and we can sample from $p(\theta_1, \theta_2)$. We begin with an initial value (θ_1^0, θ_2^0) , the workflow for Gibbs algorithm is:

- 1. sample $\theta_1^j \sim \rho(\theta_1|\theta_2^{j-1})$ $\binom{J-1}{2}$ and then
- 2. sample $\theta_2^j \sim \rho(\theta_2 | \theta_1^j)$ $\binom{J}{1}$.

One thing to note here is that the sequence in which the theta's are sampled are not independent!

Bivariate Normal Example

Suppose

$$
\theta \sim N_2(0,\Sigma) \text{ and } \Sigma = \frac{1}{\rho} \frac{\rho}{1}
$$

Then, we have:

$$
\theta_1|\theta_2 \sim N(\rho\theta_2, [1-\rho^2])
$$

 $\theta_2|\theta_1\sim \mathcal{N}(\rho\theta_1,[1-\rho^2])$ are the conditional distributions. The Gibbs sampling proceeds as follows:

> . .

k
$$
\theta_1 \sim N(\rho \theta_2^{k-1}, [1 - \rho^2]) \quad \theta_2 \sim N(\rho \theta_1^k, [1 - \rho^2])
$$

Suppose
$$
\theta = (\theta_1, \theta_2, ..., \theta_K)
$$
, the Gibbs workflow is as follows:
\n
$$
\begin{aligned}\n\theta_1^j &= p(\theta_1 | \theta_2^{j-1}, ..., \theta_K^{j-1}) \\
\theta_2^j &= p(\theta_2 | \theta_1^j, \theta_3^{j-1}, ..., \theta_K^{j-1}) \\
\vdots \\
\theta_K^j &= p(\theta_K | \theta_1^j, ..., \theta_{K-1}^j, \theta_{K+1}^{j-1}, ..., \theta_K^{j-1})\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\theta_K^j &= p(\theta_K | \theta_1^j, ..., \theta_{K-1}^j) \\
\text{The distributions above are call the full conditional distributions.}\n\end{aligned}
$$

Gibbs sampling can be used to draw samples from $p(\theta)$ when:

- Other methods don't work quite well in higher dimensions.
- Draw samples from the full conditional distributions is easy, $p(\theta_k | \theta_{-k}).$

[Markov Chain Monte Carlo](#page-81-0)

- Transformation based methods: Usually limited to drawing from standard distributions.
- Rejection and Importance sampling: Require selection of good proposal distirbutions.

In high dimensions, usually most of the density $p(x)$ is concentrated within a tiny subspace of x . Moreover, those subspaces are difficult to be known a priori.

A solution to these are MCMC methods.

• Markov Chain: A joint distribution $p(X)$ over a sequence of random variables $X = \{X_1, X_2, \ldots, X_n\}$ is said to have the Markov property if

$$
p(X_i|X_1,\ldots,X_{i-1})=p(X_i|X_{i-1})
$$

The sequence is then called a Markov chain.

• The idea is that the estimates contain information about the shape of the target distribution p .

- The basic idea is propose to move to a new state x_{i+1} from the current state x_i with probability $q(x_{i+1}|x_i)$, where q is called the proposal distribution and our target density of interest is $p (= \frac{1}{Z}\tilde{p}).$
- The new state is accepted with probability $\alpha(x_i,x_{i+1})$.
	- If $p(x_{i+1}|x_i) = p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})}{p(x_i)})$ $\frac{p(x_{i+1})}{p(x_i)}$.
	- If $p(x_{i+1}|x_i) \neq p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})q(x_i|x_{i+1})}{p(x_i)q(x_{i+1}|x_i)})$ $\frac{p(\textsf{x}_{i+1})q(\textsf{x}_i|\textsf{x}_{i+1})}{p(\textsf{x}_i)q(\textsf{x}_{i+1}|\textsf{x}_i)}$) = min $(1,\frac{\tilde{p}(\textsf{x}_{i+1})q(\textsf{x}_i|\textsf{x}_{i+1})}{\tilde{p}(\textsf{x}_i)q(\textsf{x}_{i+1}|\textsf{x}_i)}$ $\frac{p(x_{i+1})q(x_i|x_{i+1})}{p(x_i)q(x_{i+1}|x_i)}$
- Evaluating α , we only need to know the target distribution up to a constant of proportionality or without normalization constant.
- 1. Initialize x_0 .
- 2. for $i = 1, ..., N$ do:
- 3. Sample $x^* \sim q(x^*|x_{i-1})$.
- 4. Compute $\alpha = \min(1, \frac{\tilde{p}(x^*)q(x_{i-1}|x^*)}{\tilde{p}(x_{i-1})q(x^*)x_{i-1}})$ $\frac{p(x)q(x_{i-1}|x)}{\tilde{p}(x_{i-1})q(x^*|x_{i-1})}$
- 5. Sample $u \sim \mathcal{U}(0, 1)$
- 6. if $u \leq \alpha$:

$$
x_i=x^*
$$

else:

$$
x_i=x_{i-1}
$$

How do we choose the initial state x_0 ?

How do we choose the initial state x_0 ?

- 1. Start the Markov Chain at an initial x_0 .
- 2. Using the proposal $q(x|x_i)$, run the chain long enough, say N_1 steps.
- 3. Discard the first $N_1 1$ samples (called 'burn-in' samples).
- 4. Treat x_{N_1} as first sample from $p(x)$.

<https://chi-feng.github.io/mcmc-demo/app.html>