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Topics

Rejection Sampling

Importance Sampling

1. Markov Chains

2. Importance Sampling

3. Gibbs Sampling

4. Markov Chain Monte Carlo
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Main Goal

• We want to compute posterior predictive distribution (or

something similar)

• We would typically use Monte Carlo methods to do this.

• I =
∫
f (x)p(x)dx where p(x) is the posterior distribution.

• We can approximate I by 1
N

∑N
i=1 f (xi ), where xi ∼ p(x).

• Goal: sample from p(x).
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Rejection Sampling

• Let p(x) be the target distribution from which we want to

sample.

• Typically, p(x) is the posterior distribution.

• But, we do not have access to p(x). Rather, we have access

to p̃(x), which is proportional to p(x).

• We can write p(x) = p̃(x)
Z , where Z is the normalization

constant.

• Typically, p̃(x) is the joint distribution of the data and the

parameters.

• Let q(x) be a proposal distribution from which we can sample.

• Let M be a constant such that M ≥
˜p(x)

q(x) for all x .

• Then, we can sample from p(x) by sampling from q(x) and

accepting the sample with probability p(x)
Mq(x) .
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Notebook: rejection-sampling.ipynb
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling (Rejected Sample)
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Rejection Sampling (Accepted Sample)
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Rejection Sampling (10 samples)
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Rejection Sampling (10 samples) (KDE)
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Rejection Sampling (1000 samples)
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Rejection Sampling (1000 samples) (KDE)
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Rejection Sampling (10000 samples)

4 2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rejection sampling with N=10000 samples
 Acceptance rate: 0.51

p(x)
Mq(x)
Accepted samples
Rejected samples

19



Rejection Sampling (10000 samples) (KDE)
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Rejection Sampling Proof

• Acknowledgement: Borrowed from ritvikmath YT channel

• Aim:

• Show that the samples we accept are distributed according to

p(x).

• Or, the density of an accepted sample (say xs) is p(xs) (and

not p̃(xs)).

• Acceptance Probability α(x): Probability that we accept a

sample xs generated from q(x).

α(xs) =
p̃(xs)

Mq(xs)
= P(Accept|xs) (1)
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Rejection Sampling Proof

• Bayes Rule for Acceptance:

P(xs |Accept) =
P(Accept|xs)P(xs)

P(Accept)
(2)

• where P(xs |Accept) is the density of accepted sample xs . We

want to evaluate this and show this is p(xs).

• P(Accept|xs) is α(xs)

• P(xs) = q(x) is the density of samples we draw from q(x).

• P(Accept) is the unconditional probability that we accept a

sample generated from q(x).
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Proof of Rejection Sampling

• P(Accept) is the unconditional probability that we accept a

sample generated from q(x).

P(Accept) =

∫
P(Accept|xs)P(xs)dxs (3)

P(Accept) =

∫
α(xs)q(xs)dxs (4)

P(Accept) =

∫
p̃(xs)

Mq(xs)
q(xs)dxs (5)

P(Accept) =
1

M

∫
p̃(xs)dxs (6)

P(Accept) =
Z

M
(7)

where Z is the normalization constant of p̃(x).
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Proof of Rejection Sampling

Plugging in the values

P(xs |Accept) =
P(Accept|xs)P(xs)

P(Accept)
(8)

P(xs |Accept) =
α(xs)q(xs)

P(Accept)
(9)

P(xs |Accept) =

p̃(xs)
Mq(xs)

q(xs)

Z
M

(10)

P(xs |Accept) =
p̃(xs)

Z
(11)

P(xs |Accept) = p(xs) (12)

24
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Thought Experiment

• Let us assume p̃(x) is D dimensional Gaussian ND(0, σ2pI )

• Let us assume our proposal distribution q(x) is ND(0, σ2qI )

3 2 1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 p(x)
q(x)

• How to choose multiplier M?

• Match the densities at the peak of p̃(x) and q(x), i.e. at

x = ~0.
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Thought Experiment

• Match the densities at the peak of p̃(x) and q(x), i.e. at

x = ~0.

• p̃(x) = 1
(2π)D/2σD

p
exp(− 1

2σ2
p
xT x)

• q(x) = 1
(2π)D/2σD

q
exp(− 1

2σ2
q
xT x)

• At x = ~0, p̃(x) = 1
(2π)D/2σD

p
and q(x) = 1

(2π)D/2σD
q

• M = p̃(x)
q(x) =

σD
q

σD
p

= (
σq

σp
)D

26
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Thought Experiment
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Thought Experiment

• M = p̃(x)
q(x) =

σD
q

σD
p

= (
σq

σp
)D

• Let us assume σp = 1 and σq = 1.1
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Thought Experiment

• M = p̃(x)
q(x) =

σD
q
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= (
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• Let us assume σp = 1 and σq = 1.1
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• Acceptance probability is very low as D increases.
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Challenges with Rejection Sampling

• Rejection sampling is inefficient when the target distribution is

very different from the proposal distribution. In this case, we

will reject a lot of samples.

• This is a problem when sampling from high-dimensional

distributions. Acceptance probability α(x) is very low.
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Back to the main problem at hand

• We want to compute posterior predictive distribution (or

something similar)

• We would typically use Monte Carlo methods to do this.

• I =
∫
f (x)p(x)dx where p(x) is the posterior distribution.

• We can approximate I by 1
N

∑N
i=1 f (xi ), where xi ∼ p(x).

• But, we do not have access to p(x). Rather, we have access

to p̃(x), which is proportional to p(x).
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Back to the main problem at hand

• We can approximate I by 1
N

∑N
i=1 f (xi ), where xi ∼ p(x).

• But, we do not have access to p(x). Rather, we have access

to p̃(x), which is proportional to p(x).

• In rejection sampling, we took a sample xi from q(x) and

accepted it with probability p̃(xi )
Mq(xi )

.

• Can we use all samples xi from q(x) without rejection?
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Importance Sampling

• In rejection sampling, we took a sample xi from q(x) and

accepted it with probability p̃(xi )
Mq(xi )

.

• Can we use all samples xi from q(x) without rejection?

• I =
∫
f (x)p(x)dx ≈ 1

N

∑N
i=1 f (xi ), where xi ∼ p(x).

• Let us choose a proposal distribution q(x) which has support

over the entire domain of p(x).

• I =
∫
f (x)p(x)dx =

∫
f (x)p(x)q(x)q(x)dx

• I =
∫
f (x)w(x)q(x)dx , where w(x) = p(x)

q(x) . w(x) is called

the importance weight.

• I = Eq[f (x)w(x)] =
∑N

i=1 f (xi )w(xi ), where xi ∼ q(x).
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Importance Sampling (with unnormlized p̃(x) instead of p(x))

I =

∫
f (x)p(x)dx ≈ 1

Z

1

S

∑
s

f (xS)
p̃ (xS)

q (xS)
(13)

Now, we need to estimate Z .

Z =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx

= Eq

[
p̃(x)

q(x)

]
=

1

S

∑
s

p̃ (xS)

q (xS)

(14)

Thus, we can write I as:

I ≈ 1

S

∑
s

f (xs)
p̃ (xs) /q (xs)

1
s

∑
t p̃ (xt) /q (xt)

=:
∑
s

f (xs) w̃s (15)
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Markov Chains



https://nipunbatra.github.io/hmm/
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Global Optimization

Notebook: mcmc=optimization.ipynb
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Importance Sampling



General Form

In rejection sampling, we saw that due to less acceptance

probability, a lot of samples were wasted leading to more time and

higher complexity to approximate a distribution.

Computing p(x), q(x) thus seems wasteful. Let us rewrite the

equation as:

φ =

∫
f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx

∼ 1

N

N∑
i=1

f (xi )
p(xi )

q(xi )
=

1

N

N∑
i=1

f (xi )wi

Here, xi ∼ q(x). wi is known as the importance(weight) of sample

i.
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However the normalization constant Z is generally not known to

us. Thus writing:

p(x) =
p̃(x)

Z
(16)

Now inserting this in earlier equations, we get:

φ =
1

Z

∫
f (x)p̃(x)dx =

1

Z

∫
f (x)

p̃(x)

q(x)
q(x)dx

∼ 1

NZ

N∑
i=1

f (xi )
p̃(xi )

q(xi )
=

1

NZ

N∑
i=1

f (xi )wi

We know that:

Z =

∫ ∞
∞

p̃(x)dx =

∫ ∞
∞

p̃(x)

q(x)
q(x)dx

=
1

N

N∑
i=1

wi
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Substuting this value of Z in the equation above, we get:

φ =
1

N

N∑
i=1

f (xi )wi =

∑N
i=1 f (xi )wi∑N

i=1 wi

=
N∑
i=1

f (xi )Wi

Here Wi = wi∑N
i=1 wi

are the normalized weights.
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Limitations

• Recall that Var φ̂ = var(f )
N . Importance sampling replaces

var(f ) with var(f p
q ). At positions where p >>> q, the

weight can tend to ∞!

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w(
x)

Weight function w(x)
p(x)
q(x)
w(x)

39



Gibbs Sampling



General Form

Suppose we wish to sample θ1, θ2 ∼ p(θ1, θ2), but cannot use:

• direct simulation

• accept-reject method

• Metropolis-Hasting

But we can sample using the conditionals i.e.:

• p(θ1|θ2) and

• p(θ2|θ1),

then we can use Gibbs sampling.
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Suppose θ1, θ2 ∼ p(θ1, θ2) and we can sample from p(θ1, θ2). We

begin with an initial value (θ01, θ
0
2), the workflow for Gibbs

algorithm is:

1. sample θj1 ∼ p(θ1|θj−12 ) and then

2. sample θj2 ∼ p(θ2|θj1).

One thing to note here is that the sequence in which the theta’s

are sampled are not independent!
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Bivariate Normal Example

Suppose

θ ∼ N2(0,Σ) and Σ =
1 ρ

ρ 1

Then, we have:

θ1|θ2 ∼ N(ρθ2, [1− ρ2])

θ2|θ1 ∼ N(ρθ1, [1− ρ2]) are the conditional distributions. The

Gibbs sampling proceeds as follows:

Iteration Sample θ1 Sample θ2

1 θ1 ∼ N(ρθ02, [1− ρ2]) θ2 ∼ N(ρθ11, [1− ρ2])

.

.

k θ1 ∼ N(ρθk−12 , [1− ρ2]) θ2 ∼ N(ρθk1 , [1− ρ2])
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Multivariate case

Suppose θ = (θ1, θ2, . . . , θK ), the Gibbs workflow is as follows:

θj1 = p(θ1|θj−12 , . . . , θj−1K )

θj2 = p(θ2|θj1, θ
j−1
3 , . . . , θj−1K )

.

.

θjk = p(θk |θj1, . . . , θ
j
k−1, θ

j−1
k+1, . . . , θ

j−1
K )

.

.

θjK = p(θK |θj1, . . . , θ
j
K−1)

The distributions above are call the full conditional distributions.
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Advantages

Gibbs sampling can be used to draw samples from p(θ) when:

• Other methods don’t work quite well in higher dimensions.

• Draw samples from the full conditional distributions is easy,

p(θk |θ−k).
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Markov Chain Monte Carlo



Limitations of basic sampling methods

• Transformation based methods: Usually limited to drawing

from standard distributions.

• Rejection and Importance sampling : Require selection of good

proposal distirbutions.

In high dimensions, usually most of the density p(x) is

concentrated within a tiny subspace of x . Moreover, those

subspaces are difficult to be known a priori.

A solution to these are MCMC methods.
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Markov Chain

• Markov Chain: A joint distribution p(X ) over a sequence of

random variables X = {X1,X2, . . . ,Xn} is said to have the

Markov property if

p(Xi |X1, . . . ,Xi−1) = p(Xi |Xi−1)

The sequence is then called a Markov chain.

• The idea is that the estimates contain information about the

shape of the target distribution p.
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Metropolis Hastings

• The basic idea is propose to move to a new state xi+1 from

the current state xi with probability q(xi+1|xi ), where q is

called the proposal distribution and our target density of

interest is p(= 1
Z p̃).

• The new state is accepted with probability α(xi , xi+1).

• If p(xi+1|xi ) = p(xi |xi+1), then α(xi , xi+1) = min(1, p(xi+1)
p(xi )

).

• If p(xi+1|xi ) 6= p(xi |xi+1), then

α(xi , xi+1) = min(1, p(xi+1)q(xi |xi+1)
p(xi )q(xi+1|xi ) ) = min(1, p̃(xi+1)q(xi |xi+1)

p̃(xi )q(xi+1|xi ) )

• Evaluating α, we only need to know the target distribution up

to a constant of proportionality or without normalization

constant.
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Algorithm: Metropolis Hastings

1. Initialize x0.

2. for i = 1, . . . ,N do:

3. Sample x∗ ∼ q(x∗|xi−1).

4. Compute α = min(1,
p̃(x∗)q(xi−1|x∗)
p̃(xi−1)q(x∗|xi−1)

)

5. Sample u ∼ U(0, 1)

6. if u ≤ α:

xi = x∗

else:

xi = xi−1
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Pop Quiz

How do we choose the initial state x0?

1. Start the Markov Chain at an initial x0.

2. Using the proposal q(x |xi ), run the chain long enough, say N1

steps.

3. Discard the first N1 − 1 samples (called ’burn-in’ samples).

4. Treat xN1 as first sample from p(x).
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MCMC demo

https://chi-feng.github.io/mcmc-demo/app.html
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