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Discovery that transformed Pi



The Discovery That Transformed Pi
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https://www.youtube.com/watch?v=gMlf1ELvRzc


Monte Carlo Simulation



The idea behind MC Simulation

• We often want to compute expected value of some function of

a random variable, which turns into the integral,

E [f (x)] =

∫
f (x)p(x)dx

where x ∈ Rn, f : Rn → Rm and p(x) is the target

distribution.

• In low dimensions, we can use numerical integration

techniques to compute the above integral. However, in high

dimensions, this is not feasible.

• Alternative approach is to draw multiple random samples,

xi ∼ p(x) and compute

E [f (x)] ≈ 1

N

N∑
i=1

f (xi )
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General Form

The general form of Monte Carlo methods is: The expectation of a

function f (x) with respect to a distribution p(x) is given by:

Ex∼p(x)[f (x)] =

∫
f (x)p(x)dx (1)

Using Monte Carlo methods, we can estimate the above

expectation by sampling xi from p(x) and computing the average

of f (xi ).

Ex∼p(x)[f (x)] ≈ 1

N

N∑
i=1

f (xi ) (2)

where xi ∼ p(x).
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Unbiased Estimator?

Is Monte Carlo Sampling a biased or unbiased estimator?

We know:

Ex∼p(x)[f (x)] =

∫
f (x)p(x)dx = φ (3)

Let xi ∈ 1, . . . ,N be i.i.d samples:

φ̂ =
1

N

N∑
i=1

f (xi )

E(φ̂) =

∫
1

N

N∑
i=1

f (xi )p(xi )dx =
1

N

N∑
i=1

∫
f (xi )p(xi )dx

=
1

N

N∑
i=1

E(f (xi )) = φ

Thus, it is an unbiased estimator!
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Estimating Pi using Monte Carlo (Part 1)

We can estimate the value of pi using Monte Carlo methods by

considering a unit square with a quarter circle inscribed within it.

• Let p(x) be defined over the unit square using the uniform

distribution in two dimensions, i.e., p(x) = U(x) = 1 for

x ∈ [0, 1]2.

• Let f (x) be the indicator function defined as follows:

f (x) =

Green(1), if x falls inside the quarter circle,

Red(0), otherwise.
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Estimating Pi using Monte Carlo (Part 1)

• Or, we can write f (x) to be the following:

f (x) =

1, if x21 + x22 ≤ 1,

0, otherwise.

• Or, using the indicator function, we can write f (x) to be the

following:

f (x) = I(x21 + x22 ≤ 1)

x1

x2

1

1 π
4 ≈

Green area
Green area+Red area

7



0 1000 2000 3000 4000 5000
Number of Samples

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Va
lu

e

Mean Estimate of  and Variance across Seeds

Mean Estimate
± 1 SD
± 2 SD
± 3 SD
± 4 SD
True 

8



Estimating a function using Monte Carlo

Let x ∈ U(−1, 1) and y = f (x) = x2.
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Sampling converges slowly

The expected square error of the Monte Carlo estimate is given by:

E
(
φ̂− E(φ̂)

)2
= E

[
1

N

N∑
i=1

(f (xi )− φ)

]2

=
1

N2

N∑
i=1

N∑
j=1

E(f (xi )f (xj))− φE(f (xi ))− E(f (xj))φ+ φ2

=
1

N2

N∑
i=1

∑
i 6=j

φ2 − 2φ2 + φ2

+ E(f 2)− φ2
 =

1

N
V(f )

∴ E
(
φ̂− E(φ̂)

)2
= O(N−1)

Thus, the expected error drops as O(N−
1
2 ).
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Pop Quiz

How many samples (N) do we need to reach single-precision (i.e.,

∼ 10−7)?
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Is sampling easy?

Many reasons contribute to sampling not always being easy in

higher dimensions. For example,

• need a global description of the entire function

• need to know probability densities everywhere

• need to know regions of high density
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Estimating prior predictive distribution

• Let p(θ) be the prior distribution of parameter θ ∈ R2. Say,

for example, p(θi ) = N (0, 1)∀i .
• Let p(y |θ, x) be the likelihood function. Say, for example,

p(y |θ, x) = N (θ0 + θ1x , 1).

• Then, the prior predictive distribution is given by:

p(y |x) =

∫
p(y |θ, x)p(θ)dθ (4)

p(y |x) ≈ 1

N

N∑
i=1

p(y |θi , x) (5)

where θi ∼ p(θ).
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Estimating posterior predictive distribution

Extending for posterior predictive distribution, we have:

p(y |x ,D) =

∫
p(y |θ, x)p(θ|D)dθ (6)

p(y |x ,D) ≈ 1

N

N∑
i=1

p(y |θi , x) (7)
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Rejection Sampling



Rejection Sampling

• Let p(x) be the target distribution from which we want to

sample.

• Let q(x) be a proposal distribution from which we can sample.

• Let M be a constant such that M ≥ p(x)
q(x)∀x .

• Then, we can sample from p(x) by sampling from q(x) and

accepting the sample with probability p(x)
Mq(x) .

15



Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Rejection Sampling
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Proof of Rejection Sampling

Acceptance Probability α(x)

α(x) =
p(x)

Mq(x)
(8)

Bayes Rule for Acceptance

P(Sample|Accept) =
P(Accept|Sample)P(Sample)

P(Accept)
(9)

P(Sample)

We draw samples from q(x), so P(Sample) = q(x).
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Proof of Rejection Sampling

Further, P(Accept|Sample) = α(x) =
p(x)

Mq(x)
.

Finally, P(Accept) =
∫
P(Accept|Sample)P(Sample)dSample =∫

α(x)q(x)dx =
1

M

∫
p(x)dx =

1

M
.

P(Accept)

P(Accept) =
1

M
(10)

Thus, P(Sample|Accept) =
p(x)

Mq(x)
× q(x)

1/M
= p(x).

Thus, we have shown that the samples we accept are distributed

according to p(x).
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Rejection Sampling Completed Example

Note: Figures not on github.

27



Challenges with Rejection Sampling

• Rejection sampling is inefficient when the target distribution is

very different from the proposal distribution.

• In this case, we will reject a lot of samples.

• This is a problem when sampling from high-dimensional

distributions.

• Acceptance probability α(x) is very low.
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Inverse CDF



General Form

Inverse Cumulative Distribution Function (Inverse CDF) sampling

is a technique used to generate random numbers from a given

probability distribution.

Particularly useful when sampling from distributions lacking a

straightforward analytical method for direct sampling.
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A method of sampling from the distribution is sampling

u ∈ U(0, 1) and find x = F−1X (u). The cumulative probability

distribution (cdf) of X is:

FX (x) = P(X <= x) =

∫ ∞
−∞

π(u)I (u <= x)du =

∫ ∞
−∞

π(u)du

(11)

Thus, Sample u ∈ U(0, 1) and set Y = F−1π (u).
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Proof

We need to prove that the algorithm mentioned above produces

samples from π. We calculate the cdf of X produced by the

algorithm above. For any y ∈ X we have:

P(Y <= y) = P(Y = F−1X (u) <= y)

= P(u <= FX (y))

=

∫ 1

0
I (u <= FX (y)).1du =

∫ FX (y)

0
du = FX (y)

This shows that the cdf of Y produced by the algorithm is the

same as cdf of X ∼ π.
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Example of Normal distribution

Number of samples = 25:
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Number of samples = 100:
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Number of samples = 1000:
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We see that as the number of samples increases, we are able to

approximate the induced distribution which is the normal

distribution for this example.
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Limitations:

• Limited Distribution Complexity: It relies on having an

analytically calculable cumulative distribution function (CDF)

and an invertible CDF function.

• Numerical Inversion Challenges: When the inverse of the CDF

cannot be expressed analytically, numerical methods introduce

numerical errors and slow down the sampling process.

• Efficiency and Multivariate Distributions: It can be

resource-intensive for high-dimensional multivariate

distributions.
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Importance Sampling



General Form

In rejection sampling, we saw that due to less acceptance

probability, a lot of samples were wasted leading to more time and

higher complexity to approximate a distribution.

Computing p(x), q(x) thus seems wasteful. Let us rewrite the

equation as:

φ =

∫
f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx

∼ 1

N

N∑
i=1

f (xi )
p(xi )

q(xi )
=

1

N

N∑
i=1

f (xi )wi

Here, xi ∼ q(x). wi is known as the importance(weight) of sample

i.
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However the normalization constant Z is generally not known to

us. Thus writing:

p(x) =
p̃(x)

Z
(12)

Now inserting this in earlier equations, we get:

φ =
1

Z

∫
f (x)p̃(x)dx =

1

Z

∫
f (x)

p̃(x)

q(x)
q(x)dx

∼ 1

NZ

N∑
i=1

f (xi )
p̃(xi )

q(xi )
=

1

NZ

N∑
i=1

f (xi )wi

We know that:

Z =

∫ ∞
∞

p̃(x)dx =

∫ ∞
∞

p̃(x)

q(x)
q(x)dx

=
1

N

N∑
i=1

wi
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Substuting this value of Z in the equation above, we get:

φ =
1

N

N∑
i=1

f (xi )wi =

∑N
i=1 f (xi )wi∑N

i=1 wi

=
N∑
i=1

f (xi )Wi

Here Wi = wi∑N
i=1 wi

are the normalized weights.
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Limitations

• Recall that Var φ̂ = var(f )
N . Importance sampling replaces

var(f ) with var(f p
q ). At positions where p >>> q, the

weight can tend to ∞!
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Gibbs Sampling



General Form

Suppose we wish to sample θ1, θ2 ∼ p(θ1, θ2), but cannot use:

• direct simulation

• accept-reject method

• Metropolis-Hasting

But we can sample using the conditionals i.e.:

• p(θ1|θ2) and

• p(θ2|θ1),

then we can use Gibbs sampling.
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Suppose θ1, θ2 ∼ p(θ1, θ2) and we can sample from p(θ1, θ2). We

begin with an initial value (θ01, θ
0
2), the workflow for Gibbs

algorithm is:

1. sample θj1 ∼ p(θ1|θj−12 ) and then

2. sample θj2 ∼ p(θ2|θj1).

One thing to note here is that the sequence in which the theta’s

are sampled are not independent!
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Bivariate Normal Example

Suppose

θ ∼ N2(0,Σ) and Σ =
1 ρ

ρ 1

Then, we have:

θ1|θ2 ∼ N(ρθ2, [1− ρ2])

θ2|θ1 ∼ N(ρθ1, [1− ρ2]) are the conditional distributions. The

Gibbs sampling proceeds as follows:

Iteration Sample θ1 Sample θ2

1 θ1 ∼ N(ρθ02, [1− ρ2]) θ2 ∼ N(ρθ11, [1− ρ2])

.

.

k θ1 ∼ N(ρθk−12 , [1− ρ2]) θ2 ∼ N(ρθk1 , [1− ρ2])
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Multivariate case

Suppose θ = (θ1, θ2, . . . , θK ), the Gibbs workflow is as follows:

θj1 = p(θ1|θj−12 , . . . , θj−1K )

θj2 = p(θ2|θj1, θ
j−1
3 , . . . , θj−1K )

.

.

θjk = p(θk |θj1, . . . , θ
j
k−1, θ

j−1
k+1, . . . , θ

j−1
K )

.

.

θjK = p(θK |θj1, . . . , θ
j
K−1)

The distributions above are call the full conditional distributions.
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Advantages

Gibbs sampling can be used to draw samples from p(θ) when:

• Other methods don’t work quite well in higher dimensions.

• Draw samples from the full conditional distributions is easy,

p(θk |θ−k).
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Markov Chain Monte Carlo



Limitations of basic sampling methods

• Transformation based methods: Usually limited to drawing

from standard distributions.

• Rejection and Importance sampling : Require selection of good

proposal distirbutions.

In high dimensions, usually most of the density p(x) is

concentrated within a tiny subspace of x . Moreover, those

subspaces are difficult to be known a priori.

A solution to these are MCMC methods.
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Markov Chain

• Markov Chain: A joint distribution p(X ) over a sequence of

random variables X = {X1,X2, . . . ,Xn} is said to have the

Markov property if

p(Xi |X1, . . . ,Xi−1) = p(Xi |Xi−1)

The sequence is then called a Markov chain.

• The idea is that the estimates contain information about the

shape of the target distribution p.
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Metropolis Hastings

• The basic idea is propose to move to a new state xi+1 from

the current state xi with probability q(xi+1|xi ), where q is

called the proposal distribution and our target density of

interest is p(= 1
Z p̃).

• The new state is accepted with probability α(xi , xi+1).

• If p(xi+1|xi ) = p(xi |xi+1), then α(xi , xi+1) = min(1, p(xi+1)
p(xi )

).

• If p(xi+1|xi ) 6= p(xi |xi+1), then

α(xi , xi+1) = min(1, p(xi+1)q(xi |xi+1)
p(xi )q(xi+1|xi ) ) = min(1, p̃(xi+1)q(xi |xi+1)

p̃(xi )q(xi+1|xi ) )

• Evaluating α, we only need to know the target distribution up

to a constant of proportionality or without normalization

constant.
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Algorithm: Metropolis Hastings

1. Initialize x0.

2. for i = 1, . . . ,N do:

3. Sample x∗ ∼ q(x∗|xi−1).

4. Compute α = min(1,
p̃(x∗)q(xi−1|x∗)
p̃(xi−1)q(x∗|xi−1)

)

5. Sample u ∼ U(0, 1)

6. if u ≤ α:

xi = x∗

else:

xi = xi−1
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Pop Quiz

How do we choose the initial state x0?

1. Start the Markov Chain at an initial x0.

2. Using the proposal q(x |xi ), run the chain long enough, say N1

steps.

3. Discard the first N1 − 1 samples (called ’burn-in’ samples).

4. Treat xN1 as first sample from p(x).
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MCMC demo

https://chi-feng.github.io/mcmc-demo/app.html
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